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I. Introduction 

In spatial analysis, the 1980's could be characterized 
as the decade of discrete choice modeling and, more 
generally, categorized data analysis (Williams, 1977; Wil­
son, 1981; Wrigley, 1982; 1985; Wrigley and Longley, 
1984). Subsequent to the pioneering work undertaken in 
economics, marketing and transportation, it was quickly 
recognized that most spatial decisions are discrete (for 
example, the selection of a city in which to live or a store 
at which to shop) and the discrete choice framework was 
adoptedenthusiastically(FotheringhamandO'Kelly,l989). 
One of the most popular statistical models for the analysis 
of discrete choices has been the multinomiallogit model 
(MNL). There are good reasons for its popularity: the 
model is consistent with utility-maximizing behavior; the 
selection probabilities can be expressed in closed form; 
parameter estimation is straight forward and the general 
approach has been shown to be informationally consistent 
across a range of applications and forms (Haynes and 
Phillips, 1982). 

Space, however, provides a much more complex 
background against which to model discrete choice than do 
the aspatial contexts in which the discrete choice model­
ling (OCM) framework was developed. In this paper we 
describe the added complexities space introduces into 
OCM and then discuss how they can be incorporated into 
the framework to produce more realistic spatial choice 
models. Our discussion is centered around the MNL 
model, because of its popularity, and on the role of the 
Independence from Irrelevant Alternatives (IIA) assump­
tion which is shown to be a key factor in highlighting the 
differences between aspatial and spatial choice. We also 
demonstrate that in certain models where IIA is relaxed the 
subtleties of space are not captured sufficiently and that 
these subtleties can only be captured by developing models 
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from spatial theory. Some promising beginnings in this 
direction are reported. 

The structure of the paper is as follows: The frrst 
section outlines the implications of IIA for modeling 
discrete choice processes with particular reference to the 
MNL. The next section focuses on the reliability of these 
assumptions in a spatial context. Attention then turns to 
two alternative paths for relaxing the IIA assumption 
through explicitly modeling alternative substitutability 
within the systematic component of utility or implicitly 
modeling alternative substitutability through the error 
structure. Throughout these latter two sections, we focus 
on the potential for introducing spatial effects into existing 
model frameworks. 

ll. Rationality and Independence 

As an axiom of his models for rational probabilistic 
choice over a set of discrete alternatives, Luce (1959) 
assumed that the decision process could be characterized 
by independence from irrelevant alternatives (IIA). The 
IIA assumption can be stated as: 
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where, 
c is the set of all alternatives available to the 

decision-maker; 
C' is a subset of C; 
P(jiC) is the probability of alternative j being chosen 

given that the choice set is C. 

Equation (1) implies that the odds of any elementj 
being chosen over k are independent of the size and 
composition of the choice set, i.e., the choice axiom con­
strains the odds to be constant over all possible choice sets, 
containing j and k. 

A second component of Luce's approach is the 
assumption of rationality on the part of the decision-maker, 
i.e., the (discrete) alternative which yields the highest level 
of utility will be chosen. The utility assigned to an 
alternative is typically represented as (McFadden, 1974): 

(2) 



40 The Review of Regional Studies 

where, 
X .. 

IJ 
is a vector of attributes of alternative j for 
individual i; 
is a vector of characteristics of individual i; 
is a function measuring the effect on utility of 
the attributes x for the "representative" or 
"average" consumer with characteristics s; 
is an individual-specific portion of utility. 

When the individual portion of utility is stochastic, 
the alternative with the highest level of utility can only be 
predicted up to a probability: 

Pi (j IC') = Pr (Uii- Uu. > 0) V k E C' , j ~ k (3) 

= Pr (e. - e,~ > Vik- Vij) V k e C', j ~ k 
IJ ~ 

Tversky ( 1972) has shown that whenever the random 
components of utility are uncorrelated across alternatives, 
then the decision rule is simply scalable. This implies that 
the utilities associated with each alternative can be measured 
or represented on a single continuous scale, so that the 
choice problem can be solved by pairwise comparisons 
between the scaled utility measures, i.e., (Uii - Uu.) in Equa­
tion (3). Tversky also shows that simple scalability implies 
order independence, i.e., an individual's preference rank­
ing of any two alternatives is independent of the compo­
sition of the choice set. IIA is a special case of simple 
scalability - the odds constraint obviously ensures order 
independence. This means that the assumption of zero 
correlation between the error components across alterna­
tives entails the IIA hypothesis of Equation (1 ). Thus, 
prediction of the odds of j being chosen over k are condi­
tioned by the characteristics of those two alternatives and 
are independent of the characteristics of other (irrelevant) 
alternatives. 

Specification of the selection probabilities for a 
random utility model proceeds by assuming a joint distri­
bution for the e .. 's. A convenient assumption is that the 

IJ 

random utility components are independently and identi-
cally distributed according to the Type I Extreme Value 
distribution'. This leads to the multinomiallogit (MNL) 
model for selection probabilities: 

exp (V. .) 
P .. = IJ 

1J I. exp(V.k) 
k I 

(4) 

The MNL is particularly appealing because the selec­
tion probabilities, under the distributional assumption, are 
consistent with utility-maximization by the decision-maker. 
The MNL clearly satisfies the IIA restriction since the odds 
for any pair of alternatives areunaffected by the character-

istics of other alternatives, as can be seen by taking the odds 
ratio: 

P .. 
IJ 

-= 
pik 

exp (V . . ) 
(VIJ) j~k,j=l, ... ,j,k=l, ... ,K (5) 

exp ik 

Typically, a utility maximization model entails some 
set of constraints on the choice variables. For example, in 
the classical economic model, substitutability between 
commodities arises because the individual maximizes utility 
subject to an income constraint Without the income 
constraint. there would be no need to trade off one com­
modity for another. Thus, the characteristics of other 
commodities (their prices) enter into the decision rule 
(demand equation) which determines the optimal level of 
consumption of some commodity. Further, each commod­
ity can be consumed at a non-zero level, subject to the 
nonnegativity constraints. By contrast, in the discrete 
choice context, the only constraint which is imposed is that 
only one alternative can be chosen - all other alternatives 
must be 'consumed' at a zero level. In that sense, all of the 
alternatives are egually substitutable in satisfying the con­
straint that one be chosen. However, a discrete choice 
model which assumes IIA can yield erroneous predictions 
if the elements of the choice set exhibit unequal substitut­
ability. 

Two possible strategies are available for remedying 
this situation: explicitly incorporating attributes of other 
alternatives into the observable component of the utility 
function or relaxing the assumption of simple scalability 
and zero error covariances. The applicability of these 
altemati ve approaches in spatial choice analysis will depend 
to a large extent on the particular structure of the choices in 
any given context. 

ill. Spatial Choice 

Luce-type models, which assume IIA, have frequently 
been used in the analysis of spatial choice decision, both for 
analyses of aggregate data, or flows of people, and for micro­
level analyses, which focus on individual choices. Appli­
cations of probability models of the form of Equation (5) to 
flow data are particularly prevalent in the area of destination 
choice, as, for example, the production-<:onstrained gravity 
model which originated with Huff (1962) and which is 
discussed in a random utility setting by Shepherd (1978). 
Hervitz's(1983)migrationstudyisanapplicationtoaggregate 
flow data, which explicitly invokes random utility theory and 
discusses some of the additional assumptions involved in 
using the micro-level choice theory for aggregate flows. The 
MNL has been used in a variety of contexts for micro-level 
studies, including migration (Linneman and Graves, 1983; 
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Mueller, 1982; Odland and Ellis, 1987); industrial location 
(Carlton, 1983; Hansen, 1987); choice of a recreational 
facility (Brown, 1979); choice of housing type (Quigley, 
1976); residential location and housing type (Anas, 1984; 
Clark and Onaka, 1985; Onaka and Clark, 1983; Quigley, 
1985); and choice of shopping destination and travel-de­
mand related decisions (Domencich and McFadden, 1975). 

Spatial choice sets, however, exhibit a number of 
characteristics not found typically in aspatial choice prob­
lems which can render the IIA assumption questionable. 
These characteristics can be summarized as follows: 

Size 

Spatial choice sets generally have a much larger 
number of alternatives than is found in aspatial contexts. 
Large choice sets are not a problem ~ , as long as the 
IIA assumption holds. In fact, the IIA assumption would 
be particularly useful when there are a large number of 
alternatives due to its simplification of the choice process 
and computational tractability in the face of large choice 
sets. Further, when the choice set is very large, spatial 
choice models can be calibrated on a sample of alternatives, 
a procedure which can be justified by the IIA property (see 
Ben-AkivaandLerman,1985). However,itisalsothecase 
that, with large choice sets, the equal substitutability 
constraint may be more difficult to satisfy. Consider, for 
example, the problem of predicting destination choices of 
migrating households and suppose that the choice set is the 
48 co-terminus states of the U. S. In that context, it is quite 
possible that, for a destination such as, say, North Dakota, 
a state such as South Dakota will be more equally substi­
tutable than states such as, say, California or New York. 
An alternative way of viewing this is to consider that 
individuals have a limited capacity for storing and pro­
cessing information. As a result, choice sets with large 
numbers of alternatives tend to be subdivided into clusters 
each of which has a manageable number of alternatives, 
that can be evaluated. This mental partitioning of large 
choice sets produces a situation where alternatives within 
the same subset have a greater degree of substitutability 
than do alternatives in different subsets. 

Aggregation 

The elements of spatial choice sets can often be 
characterized as groupings or aggregations of elemental 
alternatives, i.e., the precise points in space at which 
location decision processes are terminated. For example, 
the SMSA's, in Carlton's (1983) study were themselves 
the choice sets- a firm choosing a set of SMSA's. Thus, 
grouping of alternatives implies an explicit choice model 
for the aggregates and an implicit model for the elemental 

alternatives within each grouping. The latter is a conditional 
model, since choice of an aggregate is assumed to precede 
choice of an elemental alternative. 

The theory of aggregation of elemental alternatives 
(see, inter alia, McFadden (1984) and Ben-Akiva and 
Lerman (1985) suggests that grouping of alternatives can 
undermine the equal substitutability constraint in two 
ways. First, if alternatives are grouped, the expression for 
the systematic portion of utility of grouped alternatives 
should control for variations across grouped alternatives in 
the number of elemental alternatives within each grouping 
(i.e., the 'size' of each grouping) and also for the heteroge­
neity of the elemental alternatives). Exclusion of size and 
heterogeneity measures will, apart from introducing 
misspecification bias due to erroneously excluded vari­
ables, undermine IIA - for example, excluding a size 
measure when the groupings vary in this respect means that 
errors across grouped alternatives must be correlated. 
Typically, the degree of heterogeneity of elemental alter­
natives within groups and/or the number of elemental 
alternatives in each group is unknown and proxy variables 
have to be used. The use of proxy variables, however, 
introduced error into the random component of utility of 
grouped alternatives and, again, the assumption of IIA less 
tenablesinceitcannotbeassumed,apriori,thatsucherrors 
will be independent across grouped alternatives. 

Second, equal substitutability will fail to hold if the 
random components of utility for the elemental alterna­
~ are not independent, i.e., if the equal substitutability 
constraint does not hold for the elemental alternatives 
which comprise a particular grouped alternative. Thus, 
application of MNL to grouped alternatives entails the 
assumption that the choice between elemental alternatives 
can also be characterized by IIA. This holds even if size 
and heterogeneity measures are incorporated and/or un­
necessary. 

Dimensionality 

Many spatial choice problems can be characterized 
as multi-dimensional. For example, the migration decision 
process can be broken down into the move/stay decision 
and the destination choice decision; intra-urban residential 
mobility involves both the choice of a neighborhood and 
the choice of a particular dwelling unit Treating a multi­
dimensional choice problem as a unidimensional choice 
problem can render the equal substitutability constraint 
untenable. To see this, consider the residential location 
problem and suppose that the utility function for individual 
i is specified as: 

(6) 
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where, 
j subscripts the neighborhoods of choice, j=1, .. , J; 
k subscripts the housing units, k, in neighborhood j, 

k=1, .. Mr 
The housing units in each neighborhood will share 

the unique characteristics of that neighborhood, such as 
access to the C.B .D., public service provision levels, and so 
on. Thus, (6) can be decomposed along the dimensions of 
choice as (see Ben-Ak.iva and Lerman, 1985): 

Spatial Continuity 

In any choice situation with a large number of alter­
natives, it seems clear that individuals partition the choice 
set into clusters of alternatives. It is usually easier to 
identify clusters of alternatives in aspatial choice, such as 
brands of decaffmated coffee, sports cars, types of public 
transit, etc., than it is in spatial choice. This difference 
arises because, whereas in aspatial choice, the discriminating 
factor between factor between clusters is discrete (an 

(7) automobile is either a sports car or a non-sports car), the 
discriminating factor between clusters of spatial alternatives 

Where, is usually space itself, which is continuous. The imposition 
V.. and e .. are the observable and unobservable neigh- · of discrete boundaries in such an instance is subjective and 
'kr~level component of utility. rather arbitrary. Boundaries of spatial clusters are more 

V ik and eik are the observable and unobservable com- likely to be 'fuzzy' (Zadeh, 1965; Gale, 1972; Pipkin, 
ponents of utility which are specific to the dwelling 1978) than discrete which causes problems in the application 
units in j. ofchoicemodelssuchas thenestedlogitthatneedanapriori 

and, e* ·tis a random component of utility shared by choice definition of clusters. The successful application of such 
dimen~~ons. models in an aspatial context thus offers no guarantee of 

If the utility function can be decomposed as in (7) similar success in a spatial context 
above, then, even if the separate elements of the random The continuous nature of space affects choice in 
component are independent of each other within each another way. In clusters of aspatial alternatives there is an 
alternative and are each independent across alternatives, implicit assumption of randomness in the arrangement of 
the only way that equal substitutability can hold for the full alternatives which within a cluster, are assumed to be equal 
choice set is if the e .. 's have zero variance. This follows substitutes for one another. In a spatial choice cluster, 

1) 

since the covariance between dwelling-specific random however, there is an ordering to the alternatives, resulting 
components which share a common neighborhood is equal from the final locations of alternatives and the different 
to the variance of the neighborhood level random compo- spatial relationships that exist for each alternative. Conse­
nent which is common to both dwelling units: quently, the more two alternatives are separated by space, 

E(e . . k e .. 1 )=el-. =o~ k,lEj,ki:l 
lj lj lj J 

the less likely they are to be substitutes for each other. This 
(8) again reflects the discrete nature of most aspatial relation­

ships. Formally, if S .. is defined as the degree of substi-
JJ 

Multi-dimensional choice sets can arise in three 
ways. First, there are "naturally" dimensioned choice sets, 
as in the move/stay and destination choice dimensions in 
migration. Multiple dimensions can also arise when the 
observed attributes vary at different spatial scales. For 
example, in the housing choice problem considered above, 
the neighborhood-level attributes are constant within 
neighborhoods as can be seen from Equation 7. If there are 
components of utility which vary at different spatial scales, 
then the random component can, in principle, be decom­
posed as in (7) which leads to the potential IIA violation 
(8)~ Finally, multiple dimensions can arise when the choice 
set contains elements which share some qualitative aspect, 
as for example C.B .D .locations versus suburban locations. 
This sharing of qualitative aspects can, in principle, be 
facilitated within a MNL framework by means of dummy 
variables. However, such a strategy means that some 
component of utility will vary across sub-sets of the choice 
set while being constant within sub-sets, i.e., the utility 
function would resemble Equation 7. 

tution between two alternatives, j' and j, the following 
relationships are hypothesised: 
In spatial choice, 

-{lifj ardj s .. -
J J 0 otherwise 

In spatial choice, 

are in the same clusler 
(9) 

(10) 

wheref( )representsacontinuousfunctionandd .. represents 
JJ 

the spatial separation between j' and j. 
It can be seen from Equations (9) and (10) that while 

there is transitivity between the substitution of aspatial 
choices, there is no guarantee of a similar transitivity in 
spatial choice. Consider, for example, a cluster of auto­
mobiles defined as Luxury cars consisting of a Rolls­
Royce, a Jaguar and a Mercedes. Suppose that the Rolls­
Royce and Jaguar are substitutes for one another and that 
the Jaguar and Mercedes are also substitutable. It then 



The Impact of Space on the Application 
of Discrete Choice Models 43 

follows that the Rolls-Royce and Mercedes are substitutes, 
or, at least, there is a high probability that they are. This 
same transitivity is much less likely to occur in a spatial 
setting. Consider three destinations, A, Band C,located in 
a cluster and that B lies midway between A and C. If A and 
B and B and C are substitutes, because of their greater 
spatial separation, there is no guarantee that A and C are 
substitutes. 

Variation and Location 

Consider again the situation where an individual is 
faced with making a choice from a large number of alter­
natives, so that the alternatives are partitioned into clusters 
and only the alternatives in one cluster are examined in 
detail. In aspatial choice sets, the set of alternatives 
forming each cluster can usually be assumed to be constant 
(for example, the perception of the difference between 
regular and decaffeinated coffee or between private and 
public transit, is unlikely to vary over space). This is a 
useful assumption to make in nested choice models (such 
as the nested logit) since only one hierarchy of choices 
needs to be identified for all individuals. Unfortunately, it 
is an assumption that is very unlikely to hold for spatial 
choice problems where the evidence from the literature on 
mental maps (Gould and White, 1974) strongly suggests 
that individuals in different locations have different per­
ceptions of space. A migrant from New York, for example, 
is likely to partition space differently than a migrant from 
Arizona. The former's mental construct of opportunity 
sets is likely to contain a finer partitioning of opportunities 
in the North East, while the latter is likely to contain a finer 
partitioning of opportunities in the South West. The 
implication of this for spatial choice modelling, is that if a 
model is employed in which the partitioning of choice sets 
needs to be defined il..llrimi. as in the nested logit model, in 
theory a different partition would have to be employed for 
each individual, or at least, every origin. 

The preceding discussion has highlighted some of 
the problems which arise in spatial choice modeling and 
which can render the ITA assumption of equal substitutability 
untenable. The next two sections discuss alternative ap­
proaches, which have been formulated for modeling unequal 
substitutability. 

IV. Systematic Component Substitutability 

It is possible to sidestep, at least to some degree, the 
IIA problem by altering the set of regressors that are used 
in the functional form for V. .. For example, McFadden's 

IJ 

(1981) universallogit model allows attributes of all alter-
natives to enter into the utility function for each choice and 
yields choice rules which are similar to those of regular 

economic demand systems. Unfortunately, this model 
becomes intractable very quickly. A more modest modi­
fication is to incorporate alternative-specific constants into 
Vii as a means of correcting for misspecification bias due to 
unobserved attributes. However, this does not help much 
in modeling substitutability per se. 

An alternative, more parsimonious, approach is sug­
gested by the family of substitution models having the 
general form: 

R. exp(V.) 
p - J J 
j-! }\ exp(VIJ 

k 

(11) 

where, 
Ri is a measure of the average degree of dissimilarity 

between the observed attributes of alternative j and 
the other alternatives. 

The rationale for this approach is that the degree to 
which an alternative possesses distinctive properties af­
fects its chances of being included in a restricted choice set, 
when the number of alternatives is large. Whether it is 
affected positively or negatively is an empirical question. 

Several formulations have been suggested to 
measure an alternative' s dissimilarity to other alternatives. 
Batsell (1981), for example, suggests the following: 

where xim is the value of attribute m on alternative j (m= 1, 
.. . M) and cl>m is a substitution parameter reflecting the 
contribution of dissimilarity on the mth attribute to j's 
overall dissimilarity. Alternatives that are very similar to 
others, in terms of their attributes that affect choice, will 
have low scores on R; alternatives that are very unusual 

J 
will have high scores. 

Meyer and Eagle (1982) provide a slightly different 
measure where, 

and rik is the correlation coefficient between the attributes 
of alternatives j and k. The degree to which k differs from 
j is averaged across all alternatives k. Borgers and 
Timmermans (1987) suggest a similar formulation where, 

[ 1 Jf /M R.=ll -I,jx·m - xk I m 
J m J-1 k J rilJ 

(14) 

where differences on one attribute are averaged across all 
alternatives and the geometric mean of these values over all 
attributes is calculated. 
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Fotheringham's competing destinations model 
(Fotheringham, 1983, 1986, 1988) is an explicitly spatial 
substitution model, where 

R. = [-1 I wk/d.k]<l> (15) 
J J - 1 k J 

wk is a weight (usually size). The term inside the brackets 
is a measure of the proximity of one spatial alternative to 
all the others and will be large for more central alternatives. 
This formulation has the advantage of being able to model 
hierarchical choice, where the hierarchy of choices is 
unknown (Fotheringham, 1988). This point is expanded 
below. The formulation for R. in Equation ( 15), also allows 

J 
more flexible spatial proximity or substitution variables to 
be defmed. For instance, in store choice situations, some 
stores may be preferred to others because of their proximity 
to similar stores (comparative shopping), different stores 
(multi purpose shopping) or other activities such as bank­
ing facilities, restaurants, etc. (multi purpose trip-making). 
In each case, the formula for R. can be adjusted to measure 
the proximity of a store to different land uses. 

An alternative way of viewing the verifiable R. in 
J 

Equation ( 11) is a measure of the likelihood that alternative 
j is in a restricted choice set formed by an individual faced 
with too many alternatives to evaluate. Clearly, if every 
alternative is in the choice set evaluated by the individual, 
R. is a constant and Equation (11) is equivalent to the MNL 

J • 
formulation. 

Two assumptions made in the theoretical derivation 
of the competing destinations model separate it from other 
choice models deceived and applied mainly in aspatial 
choice contexts. One is that there is a limit to an individual's 
ability to process large amounts of information and, 
therefore, spatial choice is likely to result from a hierarchical 
strategy, whereby, the alternatives are first partitioned. 
The second, is that due to the continuous nature of space, 
the composition of spatial clusters perceived by individuals 
is often uncertain and so a probability of cluster membership 
has to be attached to each alternative. Formally, consider 
that an individual evaluates only a subset L of the J 
alternatives inC'. Denote the probability of an alternative 
j being in the setL selected by individual i as Pi (j eL). Then 
in Equation (3) each alternative's utility should be weighted 
by the probability of that alternative being in the restricted 
choice set as follows: 

P(.iiC') = Pi [Ui( Uit + lnPi (kEL)>O Vk£C', j;tok] .P (jtL) (16) 

which results in the more general choice model 
exp(V .. ) . P. (jEL) 

P. (jiC') = 1J 1 (17) 
1 I, exp (V. k). P. (keL) 

k 1 1 

and which indicates the roleofR. in the substitution models 
J 

as a measure of the likelihood of j being in the restricted 
choice set formulated by individual i. 

By incorporating a weight on each observable utility, 
the structure of the competing destinations model in 
Equation (17) is intrinsically different from that of the 
MNL model. The former no longer contains the undesir­
able (in spatial choice) IIA property: the ratio of the 
probabilities of selecting two alternatives is now: 

P.(jiC') exp(V . . ) P(je L) 
1 = __ ___;1J;_ __ _ 

Pi(kiC') exp(Vik)Pi (ke L) 
(18) 

which is no longer constant under the addition of new 
alternatives having differential effects on the values ofPi (j 
E L) and Pi (k E L). 

The substitution models discussed above provide a 
tractable method of incorporating unequal substitutability 
when the choice set is large. However, it should be noted 
that such models do not account for taste variations across 
individuals. A general specification for modeling hetero­
geneity in the population within a logit framework is: 

V .. =X .. ~1 + s. a.+ (x .. S.) R (19) 
1J lJ -1 J lJ 1 1"2 

where, ~~ isaMx 1 vectorofparametersmeasuringthe 
effect of the M attribute variables; 

and 

ai is a H x 1 vector of parameters measuring the 
effect of the H population characteristics in 
Si,j=1, . . . ,J; 

~2 is a (M x H) x 1 parameter vector for the 
interaction between attribute x.. and char-
acteristic sih. 

'JIIl 

The specification in (19) is general in that it allows 
population characteristics to either shift the systematic 
portion of utility upward, via the aib' s, or to change the 
slope for an attribute, via the interaction parameters. Ben­
Akiva and Lerman (1985) suggest that the suitability of the 
IIA assumption for a choice context, and thus the applica­
bility of MNL, depends, in part, on the degree to which 
heterogeneities in the population are accounted for in the 
systematic component. As a demonstration of this point, 
they consider the following hypothetical situation. A 
heterogeneous population is divided into two equal-sized 
groups, which are internally homogeneous. Each group 
faces a choice between shopping in the downtown area {the 
CBD) or a suburban mall (SUB 1 ). The probabilities for the 
first group are P csD = 0.95, PsUBt = 0.05. For the second 
group we have, say, P csD = 0.05 and PsUBt = 0.95. The 
population shares are, therefore, 50 percent for each center. 
A second mall, SUB2, is built in another suburb. This 
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second mall is identical to the first in observed attributes 
(including location relative to the population). The MNL 
predicts, for the frrst group, a new set of probabilities: P CBD 
= 0.9048 and P sust = Psum = 0.04 76. For the second popu­
lationsub-group, theMNL predictsP CBD=0.0256andP5UB1 

= P sum = 0.4872. The combined population shares are 
predicted by MNL to be 46.52 percent for the CBD and 
26.74 percent for each mall and are not too far off the 
intuitively correct shares of 50 percent for the CBD and 25 
percent for each mall. Thus, because heterogeneity in the 
population is accounted for, the violation of IIA is not too 
severe when it comes to aggregating the selection prob­
abilities. This is because IIA applies to individual selection 
probabilities, not to the population as a whole. The 
practical implication of this is that the severity of the 
restrictions imposed by ITA can be reduced by capturing as 
much of the heterogeneity of the population as possible in 
specifying the systematic component of utility. However, 
capturing heterogeneity, while desirable even when IIA 
holds, does impose burdens - for each individual level 
characteristic which is built into the linear predictor, the 
number of coefficients to be estimated increases by J-1 if 
interaction effects are ignored and by (J-1+M) per indi­
vidual characteristic if one includes interaction effects. 
Further, capturing heterogeneity by including characteristics 
of the population in the regressor set means that some 
parameters are alternative-specific. 

V. Random Component Substitutability 

The Nested Logit Model 

McFadden (1978) has developed a class of choice 
models, based on the generalized extreme value distribu­
tion (GEV), which can avoid the IIA assumption and yet 
are still consistent with utility maximizing behavior. The 
advantage of the GEV class of choice models is that the 
random components of utility, theei/ sin Equation (3), may 
be correlated across alternatives so that a model can be 
generated which allows for alternatives to have different 
levels of substitutability across alternatives. A particular 
case of the GEV family which is computationally tractable 
is the nested logit model (NMNL). 

The NMNL assumes that the choice process can be 
hierarchically structured along the dimensions of the choice 
set For example, suppose that the process being modeled 
is the housing choice problem described previously. It is 
hypothesized that consumers frrst choose a neighborhood, 
j, and then a housing unit, k, within that neighborhood. 
Given this choice strategy, the selection probability for the 
joint choice of a housing unit k in neighborhood j is 

P. 'k = P .. P.k . (20) 
1J 1J 1 J 

where Pi.ik is the probability of choosing unit kin neigh­
borhoodj; 

Pii is the marginal probability of choosing j; 
and P ikli is the conditional probability ofk, given that 

j is chosen. 
The NMNL selection probabilities are: 

exp(V .. + v.k- ~I .. ) 
p - 1J 1 1J 
ijk-I,exp(V. +(1-~)1) (21.a) 

n 1n 1n 

exp (V .. + (1- ~) 1 . ) 
1J 1J . 

Pij= I,exp(V. +(1-~)I. ) J=1, ... ,J; (2l.b) 
n 10 10 

exp(Vik) 
P.k . = (I ) k=l, ... ,M; (21.c) 

1 J exp . . J 
1J 

where I .. = ln t. exp (V . . I (I-~)), 
1J k- 1 1J 

n is an index of regions, 
M. represents the number of units in J 
!:: J 

and u is a parameter to be estimated where 0~ ~ < 1. 

The NMNL can thus be viewed as a system of 
models, in which lower level choices are nested in the 
upper-level choices through the parameter,~. on the in­
clusive value, ~i" With the restriction imposed on the range 
of~ = 0, the NMNL reduces to a MNL in which housing 
unit and neighborhood are chosen simultaneously. For~= 
1, the decision-maker is inferred to frrst choose a neighbor­
hood and then, conditional on the choice of a neighbor­
hood, choose a unit Values of~ outside the unit interval 
are inconsistent with utility-maximizing behavior. A ~ 
estimated as outside the unit interval, is evidence of model 
misspecification. However,~ also can be interpreted as 
approximating the correlation, or similarity, between the 
random or unobservable components of utility of each set 
of dwellings in each neighborhood. thus, if ~=0, the 
dwelling units are inferred to be uncorrelated in their 
unobserved attributes. In that instance, the IIA assumption 
holds and MNL is appropriate for the choice set. As~~ l, 
the dwelling units within each neighborhood are perceived 
by the consumer to be increasingly similar in their unob­
served attributes. In this instance, IIA does not hold and the 
choice process must be modeled as a two-stage or hierar­
chical process. The key advantage of the NMNL is that is 
facilitates the modeling of alternatives with very different 
degrees of substitutability. However, the NMNL imposes 
a particular structure of unequal substitutability. Thus, it is 
assumed that, regardless of the value of ~. IIA is an ap-
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propriate assumption for each set of dwellings within each 
neighborhoodj, as can be seen from the conditional prob­
abilities of (21.c). IIA is not, however, assumed for the 
choice between neighborhoods. 

The inclusive value term, for the neighborhood prob­
abilities, can be viewed as an additional element of the 
neighborhood-level systematic component, which adjusts 
for unequal substitutability across neighborhoods due to 
their content of dwelling units. In that context, it should 
also be noted that the inclusive value can be viewed as a 
measure of the heterogeneity of the attributes of housing 
units within each neighborhood. Thus, viewing neighbor­
hoods as grouped alternatives with the housing units as 
elemental alternatives, the NMNL framework makes ex­
plicit the sequential choice process which is assumed when 
alternatives. 

It has been noted that the NMNL bears some 
resemblance to the elimination-by-aspects (EBA) model 
proposed by Tversky ( 1972) as a means of addressing the 
IIA problem. The EBA assumes that a decision-maker 
evaluates a set of alternatives on the basis of a weighting of 
the aspects, or attributes, of the alternatives. Alternatives 
are eliminated on the basis of whether or not their aspects 
meet the decision-maker's criteria. Unequal substitutabil­
ity is not a problem since aspects are weighted, not alterna­
tives. However, Tversk:y 's modelis hard to apply (Maddala, 
1984) and yields results which are difficult to distinguish 
from NMNL. Thus, the NMNL encompasses a broader 
rangeofbehaviors than the MNL. Further, the dimensioning 
of choice sets by qualitative aspects such as CBD/suburban 
can be handled by NMNL rather than dummy variables, 
though this raises obvious questions concerning the 
structuring of the choice process and also the determina­
tion of relevant aspects. 

The NMNL model would thus appear to offer a 
solution to some of the problems created by differential 
degrees of substitutability and it has found wide use in 
aspatial contexts. However, use of the NMNL is likely to 
be more limited in spatial choice than in aspatial choice 
because of the difficulties often encountered in defming 
spatial clusters. Consider, for example, a consumer's 
mental map of grocery stores in a large city, where there are 
no obvious clusters of stores. The consumer is likely to 
have an impression about different shopping neighbor­
hoods, but where the boundaries of such neighborhoods 
occur may not be at all obvious to the modelers. In order 
to operationalize the NMNL model, cluster membership 
for each individual would have to be 'guessed' by the 
modeler. Even if this were possible, the problem of 
different degrees of substitutability within clusters would 
remain. Consequently, the use of the NMNL in spatial 
choice is restricted to those situations where clusters can be 

easily identified; an example, being the choice of store 
within shopping malls. 

Finally, it should be noted that the estimation of the 
NMNL often presents computational difficulties. The full 
information maximum likelihood {FIML) approaches can 
be difficult to implement since the likelihood function 
involves a ratio of parameters. These are notoriously slow 
to converge. An alternative to estimating all parameters 
simultaneously is to proceed sequentially, i.e., estimate the 
parameters of the attributes of the alternatives at the lowest 
level of the hierarchy, compute the inclusive values, and 
then estimate the parameters of the attributes of the next 
order of alternatives, and so on. This method should yield 
consistent estimates but will be inefficient by comparison 
with the full information approach (Anas, 1982; Haynes 
and Phillips, 1982). Further, this sequential estimation 
approach does not yield the appropriate hypothesis tests for 
the coefficients and requires a rather complex correction 
process (Amemiya, 1978). Recent software packages 
(HLOGIT available from the Transport Research Center at 
Macquaire University) have significantly eased these 
concerns. 

The Multinomial Probit Model 

An alternative to the GEV approach in modeling 
discrete choice is based on the assumption that the random 
components of utility in Equation 3 are distributed normal 
rather than Type I Extreme Value. This assumption leads 
to the multinomial probit model (MNP). Hausman and 
Wise (1978) develops a very general model in which an 
individual's tastes for the observable attributes of the 
alternatives are randomly distributed. The utility of 
alternative j for individual i is written as: 

u. . = L <Pm + ~- ) X. . + L a. . + s. h + E. . (22) 
lJ m J m lJ m h -·hJ 1 IJ 

Each parameter ~im measures individual specific de­
partures from the average weighting of attribute m, given 
by ~m • Eii is an individual-specific, alternative-specific 
random variable. Thus, the systematic and random com­
ponents can be distinguished as follows: 

U .. = Fixed + random pariS 
lJ 

(23) 

If the R_ 'sand e .. are normally distributed then the ..,liD 1J 

random partofEquation 23 is also randomly distributed. In 
spatial choice, this modeling approach has the intuitively 
appealing feature that, if an individual has a higher than 
average valuation of one attribute, say travel time in 
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destination choice, then he/she will have a higher than 
average utility for all destinations with short travel times. 
This implies that there will be a covariance between the 
unobservable components of the utility of alternatives j and 
j', which allows varying degrees of substitution between 
the alternatives. 

However, this generality is not without cost Because 
the cumulative probability distribution for the normal 
cannot be expressed in closed algebraic form, as it can for 
the generalized extreme value models, it must be computed 
numerically. This requires J -1 fold integration: 

vii- vii vij-t- vii 

pij = f.... f ell (24) 
J-l['i.· ··· ·~ - 1 "\h ... d~ - 1 

where cj>. 1 is the J-1-variate normal density function with 
)· 

mean 0 and the variance covariance matrix, n. given by: 
J, 

[ ~~J xi.-x~].~,·~-2<~o,.,. .. l (25) 

~~J 1lj-tm1~]·a,.,, ... ~~J 1~t . m1~].~ .. ~-2q,J i 

Several different strategies have been taken in this 
numerical computation. The brute force approach is to 
integrate repeatedly Equation (24) by parts and develop a 
recursion formula for the integral. Even when only trivariate 
integration is required, this is usually computationally 
infeasible. As an alternative, Daganzo (1979) suggests 
using an approximation due to Clark (1961 ). Unfortunately, 
the error associated with this approximation is not well 
understood and is not easily controlled. CPU times for this 
approach go up in proportion to the square of the size of the 
choice set While this sounds large, it is quite attractive 
compared to other techniques which tend to go up geo­
metrically with the size of the choice set. Applications with 
this technique have been quite mixed, particularly when 
some of correlations are negative. This suggests that it be 
used predominantly for exploratory work. 

Lerman and Manski (1982) use Monte Carlo tech­
niques to estimate the integral. A large set of J-1 variate 
normal deviates are generated. The fraction of these 
observations for the chosen alternative is an approximation 
for the probability in Equation (24). This approach works 
well as long as none of the probabilities are very rare. It 
does have the drawback that the likelihood function is 
merely estimated and the statistical properties of this 
sampling error are typically ignored. Sickles and Taubman 
(1986), develop Gaussian techniques for approximating 
10-fold integrals. Unlike the Clark algorithm, precision is 
improved by increasing the number of points at which the 
density function is evaluated. 

The MNP, though a more general model than MNL 
or NMNL, has only rarely been applied in a spatial choice 

context. A primary reason for this lies in the computational 
difficulties associated with the integration for Equation 
(24). However, in applications, restrictions are typically 
imposed on nj for identification purposes and to reduce the 
computational burden. For example, restricting n. to all, 
where I is the identity matrix, leads to independen~ probit 
and, in effect, assumes IIA. Miller and Lerman (1979, 
1981) have developed a probit model for the joint choice of 
a retail location and store size. Their model imposes a set 
of restrictions on W. which are similar to the restrictions 
implied by a NMNL under a choice strategy by which 
location is detennined prior to the selection of a store size 
category. Miller and Lerman's model was estimated for 18 
alternatives using Chomp, an algorithm which employs 
Clark's approximation. Though some difficulty was expe­
rienced in estimating parameters, Miller and Lerman ( 1981) 
suggest that MNP is feasible even with a large number of 
discrete alternatives. However, this claim is predicated on 
the use of an approximation which is suspect Karnakura 
andSrivastava(1982)proposeamodel with a full variance­
covariance matrix which, however, only requires two 
additional parameters. This model is similar to the MNL 
substitution models described by Equations ( 11) in that it 
assumes that unequal substitutability between alternatives 
can be modeled as a function of distances between the 
observed attributes, though Karnakura and Srivastava use 
Euclidean distance. An application of their model to 
spatial choice analysis, again using Clark's approximation, 
can be found in Borgers and Timmermans (1987). 

Obvious! y, if a model robust to IIA is estimated such 
as MNP or one of the generalized extreme value (GEV) 
models, W ald tests are appropriate. Several different types 
of specification tests for IIA are available and are reviewed 
in Haynes, Good and Dignan (1988). 

Vll. Concluding Remarks 

As with most models developed in an aspatial envi­
ronment, the introduction of space into discrete choice 
models is problematic. Spatial choice is not merely "aspatial 
choice with the addition of a distance variable": space adds 
a complexity to the relationships between alternatives that 
is not found in aspatial choice. In spatial choice, alterna­
tives have fixed and unique locations vis-a-vis each other, 
whichaffectsthedegreetowhichalternativesareperceived 
as substitutes for each other. 

This paper has argued that for a variety of reasons 
spatial choice is particularly susceptible to violation ofiiA. 
However, the solutions to this problem generally em­
ployed in aspatial choice (use of the nested logitmodel, for 
example), are not as useful in spatial choice. It is argued 
that solutions lie in the generation of an explicitly spatial 
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theory of choice from which particular model forms can be 
generated. In this manner, the competing destinations 
model in which the degree of substitution between alterna­
tives is continuous, rather than discrete, is seen as a step in 
the right direction. 

Notes 

1The Type I Extreme Value distribution (Fisher and Tippett, 
1928) is the double negative exponential distribution which is 
sometimes incorrectly referred to as the Weibull distribution. 
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