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Abstract: This study examines the value of utilizing neural net modeling for 
issues relating to optimization across a network of cities in space. Neural nets 
are made up of many nonlinear computational elements that operate in paral­
lel and are arranged in a manner similar to biological neural nets. Defining a 
neural net model involves specifying a net topology, arrangement of nodes, 
training or learning rules, adjustment of weights associated with connections, 
node characteristics, and rules of transformation from input to output. All of 
these are the major issues in such regional problems as labor force migration 
and firm location. 

I. INTRODUCTION 

The purpose of this paper is to shed light on the value of utilizing existing 
neural network modeling techniques for issues relating to optimization and clas­
sification across a network of city-centric economic markets in space. This could 
be the optimization of costs by a firm in a location decision or of income by a 
worker. Classification models could be used to simulate the necessary labor force 
migration into regionalized locations or "classifications" of employment opportu­
nities at actual firm locations to minimize structural unemployment. Neural nets 
are made up of many nonlinear computational elements that operate in parallel 
and are arranged in a manner similar to biological neural nets. Defining a neural 
net model involves specifying a net topology, such as an interstate highway sys­
tem; arrangement of nodes, such as the geographic arrangement of cities; training 
or learning rules, such as microeconomic decision theory or macroeconomic policy 
making; adjustment of weights associated with connections, such as location deci­
sion criteria; node characteristics; and rules of transformation from input to out­
put. All of these are major issues in fundamental regional science problems, such 
as labor force migration, firm location, and structural unemployment. 

A major advantage of neural nets is the ability to examine many compet­
ing hypotheses at the same time. Neural nets are more robust than statistical tech­
niques when underlying distributions are generated by nonlinear processes and 
are strongly non-Gaussian, as is the case in many economic systems. Neural nets 
are also nonparametric and make weak assumptions about the underlying distri­
bution of data as compared to standard statistical techniques. 

Neural networks have been successfully applied across several fields, 
including economics of financial markets, decision science, image processing, and 
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particularly to optimization problems such as the traveling salesman problem 
(Hopfield and Tank 1985). The improvements made are of an order of magnitude 
over conventional algorithms. Neural networks work in a parallel and distributed 
fashion and hence have relatively reduced computational times, which allow 
more flexibility of experimentation. 

This paper will be an examination of these eight and their potential for 
applications in regional economics: 

Unsupervised Learning: (1) Hebb Type Learning, (2) Competitive Learn­
ing, (3) Kohonen's Algorithm, and (4) Carpenter 
Grossberg Classifier. 

Supervised Learning: (1) Multilayer Perceptron, (2) Hopfield Model, 
(3) Hamming Net, and (4) Boltzman Machines. 

II. TRADITIONAL RESEARCH APPROACHES 

Conventional techniques for modeling labor force migration and firm loca­
tion have been limited by both the technique of analysis and the availability of 
data. 

Labor Force Migration 

Traditionally, data has been collected periodically on each place by the 
Census Bureau and statistical techniques that compare two points at a time have 
been utilized. These are referred to as "Origin-Destination" models (Greenwood 
1969; Kau and Sirmans 1977; Herzog and Schlottman 1981, 1982, 1995; Levy and 
Wadycki 1973). This work has mainly focused on verification of the human capi­
tal framework as an acceptable model for migration. The human capital model 
assumes at its foundation that the discounted value of earnings at place "j" out­
weigh the discounted value of earnings at place "i" plus the relocation cost from 
"i" to "j." These models were extended to include origin and destination place 
characteristics (earnings, employment, quality of life, etc.), characteristics of 
migrants (personal characteristics such as education, marital status, etc., with 
number of past moves emerging as a critical factor in future propensity to 
migrate), and variables representing the difficulty of the journey (mainly distance 
from "i" to "j"). A regression of likelihood for migration based on specific human 
capital variables in the origin and destination places results in partial equilibrium 
weights for each of these determinants. These studies focused on the migration 
from one specific point to another across a time interval when data was left uncol­
lected. Thus, the usefulness and realism of the analysis is limited by its relative 
nonspatiality, the pair-wise approach, the lack of dynamic interaction, and the dis­
tance between time periods of data collection. Because of the geographic limita­
tions of this type of data, some of the foundational studies have relied on state-to­
state migration only (particularly Greenwood 1969). This microeconomic work 
was, however, successful in demonstrating that there are certain characteristics of 
places that cause migration. The more recent literature (Herzog, Schlottman, and 
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Boehm 1993) examines migration as spatial job search, which is a move in the 
right direction, but without a comprehensive computational approach, the results 
are still quite limited. 

Firm Location 

Likewise, the literature on the theory of interregional firm location, as 
opposed to the analysis of competitive locational interdependence within a mono­
centric city (Hoover 1948; Hotelling 1970; and others), has also focused on partial 
equilibrium verification of the cost-centered theoretical framework (Weber 1928; 
Isard 1956; Smith 1971, ch. 8; Moses 1970; Alonso 1969; and many others). The 
early literature focuses on the location decision as an aspect of the theory of the 
firm. Total profit was perceived as total revenue minus the sum of total produc­
tion costs and total transportation costs. The limiting assumptions of perfect com­
petition allowed theorists to also assume that total revenue and total production 
costs are fixed across space, thus positioning transportation costs as the sole con­
sideration in the location of the firm. Not the least among these assumptions is 
that all factors of production, like labor and capital (including plants) are both per­
fectly mobile and informed. The majority of the theories also assume a "uniform 
transportation network;" that is, a featureless plain with inputs and output mar­
kets available at fixed known locations with no fixed path between them. These 
classical theories, along with the "central place" theories, serve more as conceptu­
alizations of how economic activity and transportation routes are originally orga­
nized, rather than as a model of the type of dynamic firm location and relocation 
needed today. 

Later work did attempt to analyze how "fixed path" transportation routes 
would impact firm location (particularly Palander 1935). These models carried 
forward all of the restrictive assumptions of those previous, including the often, 
interregionally, unrealistic assumption that the firm is limited to a single possible 
source for each of its input and output markets. This is a critical concern and must 
be expanded here in some detail. 

Weber's (1928) original two-dimensional location decision model was 
optimized with the following formula: 

n 

(1) min LIWidi, 
i=l 

where IW is the ideal weight of the input at place "i" and "d" is the distance that 
input must be shipped. The ideal weight is the product of the transportation rate 
for the input and a technical coefficient that represents the weight of the input per 
unit of product weight. In Palander's (1935) analysis of firm location with a trans­
portation network, this results in a basic decision rule: if you have a location with 
a dominant ideal weight, no matter what the network is, the plant will be located 
there. A dominant ideal weight is one that is greater than the sum of the ideal 
weights in all other locations. If you do not have a dominant weight, then the loca­
tion is based upon the arrangement of weights within the network. The theory 
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then demonstrates the location decisions that would occur given different weights 
and network types, such as linear, forked, circular, and looped arrangements. 

The key in this analysis is not the validity of modeling location in this man­
ner, but the validity of its assumptions. This model of location decision making 
assumes that the firm is limited to specific input sources without other locations 
competing for the opportunity to supply the materials and labor inputs. That is, 
that there is no interregional competition for firm location. If the firm is limited to 
one market region with inputs in a single set of fixed locations, then this model is 
sufficient for such decision making. If, however, the firm is faced with a choice of 
markets in which to locate with each having the necessary inputs, such as firms 
whose key input is labor, then this model is insufficient for decision making. 
These models also continue to assume that the dominant issue in the firm's loca­
tion decision is the transportation cost of inputs. 

In separate works, Chinitz (1969) and Barloon (1969) concluded that the 
input orientation of firms caused by the advancement of the industrial revolution 
changed direction around 1929. An ever-increasing shift toward market location 
has dominated since (they do not, however, agree on whether the changes in 
transportation and technology caused the change in industry or vice versa). The 
key issues in this change were: 

1. Transportation rates have risen faster than wholesale prices; 
2.Freight rates on raw materials are generally lower than rates for finished 

goods on a pound for pound basis; 
3. This gap has been widening over time and technological improvements 

have more greatly reduced the rates of raw materials transport; 
4. Technological change has also reduced terminal costs more than line­

haul costs; 
5. The cost of short hauls has been reduced more than long ones; and 
6. The development of trucking has also favored the large shipper. 

Given this information, an extremely important issue is revealed: which market 
from among the various available choices will be selected and why? This question 
remains unanswered because this reality remains unmodeled. 

Implications 

What these traditions fail to do is demonstrate how dynamic migration or 
firm location actually takes place given all of the place choices and what the true 
micro and macroeconomic impacts are in real space and time. That is, how attrac­
tive and repulsive variables are impacted over time as migration occurs or, per­
haps more importantly, does not occur, and how this affects the overall function­
ing of the U.S. economy. To state a more complex key question at issue when these 
two problems are brought to light at the same time, especially where structural 
unemployment is concerned, how does the interregional relocation of firms 
impact the migration of labor and vice versa? 
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III. A NEURAL NETWORK APPROACH TO REGIONAL SCIENCE 

The map in Figure 1 is a representation of the BEA Economic Areas. If each 
numbered market area is conceived as a potential departure point and/ or desti­
nation for migration or firm location (henceforth referred to as a "node"), then the 
map can serve as a powerful visual aid. These Economic Areas define the city­
centric regional geographic markets within the United States connected by the 
actual interstate transportation system. The modeler may begin with realistically 
arranged matrices of the data provided by the BEA, BLS, and other agencies for 
these Economic Areas. The realism will come from an arrangement of nodes that 
relate to one another in space in accordance with their relative location in the 
interstate transportation network. This will allow for the maximum benefit from 
the particular neural network modeling techniques chosen for application to 
regional economics from the list of potential architectures discussed below. 

FIGURE 1 

BEA Economic Areas 

Established as of February 1995 

Prepared by Bureau 
of Economic Analysis, 

Regional Economic • 
Analysis Division 
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IV. NEURAL NET MODELS 

Hebb Type Learning 

• Nonmetro Nodes 

Metro Areas are the MSAs defined by OMB as of December 1997. 

Donald Hebb (1949) first proposed a learning scheme for updating node 
connections that we now refer to as the Hebbian learning rule. He stated that 
information can be stored in connections, and postulated the learning technique 
that has made fundamental contributions to neural network theory. According to 
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this rule (as formulated in Zurada 1992), the learning signal is equal simply to the 
neuron's output "r" (see Figure 2 and Equation 2). 

In this rule: 

(2) r=f(w:x), 

FIGURE2 

Hebb Learning 
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where f is a nonlinear function, wi is a weight vector of component wii connections 
of the jth input with the ith node, and x is the input vector. The increment l1wi of 
the weight vector becomes: 

(3) l1wi =llf(w:x)x, 

where 11 is a positive number called the learning constant and determines the rate 
of learning. 

"Learning" is the adjustment of the strength of the weight or connection 
between the input and the node. The rule is an implementation of the fundamen­
tal neuro-biological statement: "When an axon of a cell A is near enough to excite 
a cell B and repeatedly and persistently takes place in firing it, some growth 
process or metabolic change takes place in one or both cells such that A's efficiency 
as one of the cells firing B is increased (Hebb 1949, p. 11)." Thus, this concept of 
strengthening or "learning" forms the foundation of all of the following neural 
network models. Learning is seen as the strengthening of a connection between 
nodes that intensifies their relation. 

It is a fundamental thesis of the authors that, in regional science terms, this 
"learning" is what is referred to as "development." In any of the following models, the cen­
tral place nodes are analogous to the cell and "strengthening" the node can take the form 
of an increase in labor force or firms. The resulting impact in the node could be decreasing 
unemployment and equilibration of income or production (or any other spatially organized 
phenomena a researcher would wish to model). 

Each application will involve a process of defining the "learning rate" by 
adjustment of one or more parameters in order to perfect the fit of the model. In a 
migration simulation, this would involve examining the correlation between the 
estimated outputs of a series of iterations to the empirical data in order to "tune" 
the model. Once tuned, predictive impact application is possible. In the area of 
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unemployment analysis, this approach could be taken with a model tuned to 
migration data in order to simulate the impact of large layoffs such as those 
recently experienced at Boeing Aircraft. Thus, a properly tuned optimization 
model could estimate the number of iterations or "years" necessary to redistribute 
the unemployed and return the system to equilibrium. If the model was set up as 
a classification algorithm, a neural network could also be used to predict the likely 
destinations of the migrants. 

All of the models presented below have potential for such applications in 
regional science. The key is to discover which structure relates properly with the 
particular problem. Also, each approach to the "learning" or update rules used to 
adjust the connection weights described below must be examined and, if chosen 
to model a particular phenomenon, developed to reflect accurately real world 
microeconomic decision making and macroeconomic impact. Thus, a fundamen­
tally mesoeconomic approach is formed. 

The Hebbian learning rule represents a purely feedforward, unsupervised 
learning. Feedforward means that the flow of information moves forward only 
through the network node, such that the output of a layer is the input to the fol­
lowing layer. There are no explicit feedback connections in feedforward networks. 
Unsupervised learning assumes that the desired response is not known; thus, 
explicit error information cannot be used to improve network behavior. 

Unsupervised Learning 

The following models fundamentally rely on the same neuro-biological 
and methodological foundations as the Hebb-type learning discussed above. In 
unsupervised learning, it is assumed that for each instant of time when the input 
is applied the desired output is not known; thus, explicit error information is not 
used to improve network behavior. This implies the same conditions inherent in 
systems with uncertainty. 

Competitive Learning 

In the simplest competitive learning networks (Phoha and Oldham 1996a, 
b), there is a single layer of output units Oi, each of which is fully connected to a 
set of inputs xi via connection weights wii ~ 0. The input-to-output relationship can 
be one of time where the input is the value of the regional economic variable 
under study in an area at one time period. The output is the value of that same 
variable in the next time period. The result is a model that demonstrates changes 
across space over time. A description of the algorithm follows. 

Let x be an input to a network of two layers with an associated set of 
weights wii" The standard competitive learning rule (Hertz, Krogh, and Palmer 
1991) is given by: 

(4) ~wi.i =11(xi -wi•j), 

which moves wi. towards x; the i* implies that only the set of weights corre­
sponding to the winning nodes is updated. The winning node is taken to be the 
one with the largest output. Another way to write this is: 
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(5) L1wii = 110i(xi- wii)' 

where Oi = 1 for i corresponding to the largest output, 0 otherwise. This has the 
appearance of Hebb rule with decay. This is the adaptive approach taken by 
Kohonen (Hertz, Krogh, and Palmer 1991) in his first algorithm (see Kohonen 
model below). The usual definition of competitive learning requires a winner­
take-all strategy. In many cases, this requirement is relaxed to update all of the 
weights in proportion to some criterion. This form of competitive learning is 
referred to as leaky learning (see Hertz, Krogh, and Palmer 1991). Hertz, Krogh 
and Palmer (1991) discuss various forms of this adaptive processing for different 
problems, including the traveling salesman problem. It has become a standard 
practice to refer to all of these as Kohonen-like algorithms. 

Kohonen's Algorithm 

Kohonen's Algorithm adjusts weights from common input nodes toN­
output nodes arranged in a two-dimensional grid (see Figure 3) to form a vector 
quantizer. Input vectors are presented sequentially in time and after enough input 
vectors have been presented, weights specify clusters or vector centers. These 
clusters or vector centers sample the input space such that the point density func­
tion of the vector centers approximate the probability density functions of the 
input vectors. This algorithm also organizes weights such that topologically close 
nodes are sensitive to physically similar inputs. Output nodes are thus ordered in 
a natural fashion. Thus, this algorithm forms feature maps of inputs. A description 
of this algorithm follows. 

Output 
units 

FIGURE3 

Kohonen's Algorithm 

t 
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Input 

Let x1, x2 , ••. , xN be a set of input vectors, which defines a point in N­
dimensional space. The output units Oi are arranged in an array and are fully con­
nected to input via the weights wij· A competitive learning rule is used to choose 
a winner unit i*, such that 
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(6) lwi.-xl$1wi-xlforalli, 

then the Kohonen's rule is given by: 

(7) Llwi =11h(i,i*)(x-w?1d). 
Here h(i, i*) is the neighborhood function such that h (i, i*) = 1 if i = i* but falls off 
with distance I ri - ri.l between units i and i* in the output array. The winner and 
close by units are updated appreciably more than those further away. A typical 
choice for h(i, i*) is: 

(8) e -(Jr,-r,.V2a2 ) I 

where cr is a parameter that is gradually decreased to contract the neighborhood. 
11 is decreased to ensure convergence. 

Carpenter Grossberg Classifier 

Carpenter and Grossberg (1988), based on their adaptive resonance theory, 
have developed a net that forms clusters and is trained without supervision. An 
example of this net with three input and two output nodes is given in Figure 4. 

FIGURE4 

Carpenter Grossberg Classifier 
Output 
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In the Carpenter Grossberg net, matching scores are computed using feed­
forward connections and the maximum value is enhanced using lateral inhibition 
among the output nodes. This net is structurally similar to the Hamming net (dis­
cussed below) but differs in that feedback connections are provided from the out­
put nodes to the input nodes. This net is completely described using nonlinear dif­
ferential equations, includes extensive feedback, and has been shown to be stable. 
Mechanisms are also provided to tum off that output node with the maximum 
value and to compare exemplars to the input for the threshold test required by the 
leader algorithm. The leader algorithm selects the first input as the exemplar for 
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the first cluster. The next input is compared to the first cluster exemplar. It "fol­
lows the leader" and is clustered with the first if the distance to the first is less than 
a threshold. Otherwise, it is the exemplar for a new cluster. This process is repeated 
for all the following inputs. The number of clusters thus grows with time and 
depends on both the threshold and the distance metric used to compare inputs to 
cluster exemplars. 

Supervised Learning 

The following models, while fundamentally relying on the same neuro­
biological foundations as Hebb type learning, have an added dimension of "super­
vision." In supervised learning, it is assumed that for each instant of time when 
the input is applied the desired output is known through an exemplar. Supervised 
learning reduces to minimization of error in multidimensional weight space. 
Supervision is very important in models where convergence is presumed (or tests 
of convergence are of interest) or where a regional or macro policy influence may 
be considered relevant. 

Multilayer Perceptron 

The multilayer perceptron described below is a feedforward net used for 
optimization, classification, and prediction with one or more layers of nodes 
between the input and output nodes. As discussed above in the section on Hebb 
type learning, the ability of these systems to "learn" is based on the thesis that 
information is stored in connections. The added layers in this network allow for 
more connection, therefore, more complex classifications of inputs. A three-layer 
perceptron with one hidden layer, nine nodes in the input layer, and three nodes 
in the output layer is shown in Figure 5. 

FIGURES 

Multilayer Perceptron 

Input Layer Hidden Layer Output Layer 

Rather than arranging the inputs in a three-by-three topographical grid, 
they are arranged in a linear fashion to demonstrate the number of weight con­
nections generated by additional layers. 
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The learning rule for this algorithm is given below. 
Learning Algorithm: 
1. Initialize weights W;i and offsets S;i to small random values. 
2. Present the input (X1 , X2 , ••• , X9} and the desired output 1 or 0. 
3. Calculate the actual outputs based on 

(9) Y; =t(i W;li -e), 
J=l 

where f is the sigmoid nonlinearity, given by 

1 
(10) f(x) = 1 -X 1 

+e 

319 

andy; is the output of node i, Xi is the input from node j of the previous 
layer, W;i is the weight from node j to node i, and 8; is the threshold for 
node i. 
4. Update the weights according to the following rule: 

(11) .::lwii = T\O;xi, 

where the error term O; in the update rule is defined as: 

(12) 0; =y;(1-y;)(d; -y;), 

if node i is the output node, or 

(13) o; =y;(1 - y;):Lokwik, 

if node i is a hidden node, and T\ is the learning rate parameter. 
5. Repeat by going to step 2. 
The process is repeated until the net stabilizes; that is, the weights cease to 

change appreciably as compared to some threshold. Here the "learning" or updat­
ing of the weights is based on the difference between the value at the output node 
and an exemplar value d;. This error is then sent back and used to adjust the 
weights through the layers until the desired response occurs. In the neural net lit­
erature, this algorithmic process is referred to as "backpropogation." 

Hopfield Model 

The Hop field net also falls under the domain of supervised learning. There 
are many different versions of the Hopfield net. This model has evolved into an 
entire class of net architectures and has found wide applications to many opti­
mization and classification problems in different fields. The model described here 
is one version of the original net (Hopfield 1982). A pictorial representation is 
given in Figure 6. 

This net has N nodes containing hardlirniting nonlinearities and binary 
input and output that take values 1 or -1. The output of each node is fed back to 
all other nodes via weights denoted by t;i. xf is element i of the exemplar for class 
s; ~(t) is the output of node j at time t. 
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FIGURE6 

Hopfield Model 

Outputs 

Inputs 

The net algorithm works as follows: 
1. Assign connection weights using 

M-1 

(14) wii=Ixjx~, i;t;j 
s=O 

-0 · -· 0<(' ')<M-1 wii- ,1- J, _ 1, J _ . 

2. Initialize with the unknown input pattern 

3. Iterate until convergence 

The function fh is a hardlimiting nonlinearity that takes the value of 1 if it 
is greater than a threshold and -1 otherwise. The process is repeated until 
node outputs remain unchanged. The node output then represents the 
exemplar pattern that best matches the unknown input. 
4. Repeat by going to step 2. 

This application of the Hopfield net is a classification problem, but it has been suc­
cessfully applied to optimization problems as well as in the traveling salesman 
problem mentioned above. 

Boltzman Machines 

Boltzman machines (Figure 7) may be seen as an extension of Hopfield 
networks to include hidden units such as those in the multilayer perceptron. In 
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Boltzman machines, probabilities of the states of the system are given by the Boltzman 
distribution of statistical mechanics and the learning rule is applicable to any sto­
chastic network with symmetric connections. In its original form, the Boltzman 
learning algorithm is very slow because of the need for extensive averaging over 
stochastic variables, but a deterministic "mean field" version of the algorithm 
speeds up the algorithm considerably. 

FIGURE7 

Boltzman Machine 

Output units 

Input units 

A Boltzman machine has the units divided into visible and hidden units. 
The visible units may be further subdivided into separate input and output units, 
the only restriction being that the weights between the units are symmetric, that 
is, wii = wii" 

Hamming Net 

The Hamming net is also an extension of the Hopfield net architecture. In 
the Hamming net, the weights and thresholds are first set in the lower subnet such 
that the matching scores generated by the outputs of the middle nodes are equal 
to N minus the Hamming distances to the exemplar patterns. The Hamming dis­
tance is the number of bits in the input that do not match the exemplar. The match­
ing scores will range from 0 to the number of elements in the input (N) and are 
highest for those nodes corresponding to classes with exemplars that best match 
the input. Thresholds and weights in the MAXNET subnet are fixed. All thresholds 
are set to 0 and weights from each node to its self are set to 1. Weights between 
nodes are inhibitory with a value of -£ where e < 1 /M. 

After weights and thresholds have been set, a binary pattern with N ele­
ments is presented at the bottom of the Hamming net. It must be presented long 
enough to allow the matching score outputs of the lower subnet to settle and ini­
tialize the output values of the MAXNET. The input is then removed and the 
MAXNET iterates until the output of only one node is positive. Classification is 
then complete and the selected class is that corresponding to the node with the 
positive output. The architecture of the Hamming net is represented in Figure 8. 
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FIGURES 
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It has been demonstrated herein that the natural structure of these models 
matches well with the temporal-spatiality of regional science problems in general 
and with migration and firm location models in particular. The survey of the 
varied techniques above indicates that there is a tremendous opportunity for 
regional science approaches in economics to benefit from neural network model­
ing. The key element in unlocking the potential of these computational methods 
is sufficient interdisciplinary communication to specifically identify the relation 
between the structural architecture and functional decision rules inherent in these 
models, created mainly for computer science and engineering, to applications in 
regional science. In order to discover how the assumptions about economic 
behavior across geographic space relate to the apparently analogous structural 
assumptions in these various neural network models, the structure of each prob­
lem must be dissected and the theoretical assumptions made explicit to determine 
which models best represent particular regional economic phenomena. 



Neural Networks and Regional Science Modeling 323 

REFERENCES 

Alonso, W. "A Reformation of Classical Location Theory and its Relation to Rent 
Theory." In G.J. Karaska and D.P. Bramhall (eds.) Locational Analysis for 
Manufacturing, 35-63. Cambridge: MIT Press, 1969. 

Barloon, M. "The Interrelationship of the Changing Structure of American Trans­
portation and Changes in Industrial Location." In G.J. Karaska and D.P. 
Bramhall (eds.) Locational Analysis for Manufacturing, 97-107. Cambridge: 
MIT Press, 1969. 

Carpenter, G.A., and S. Grossberg. "Neural Dynamics of Category Learning and 
Recognition: Attention, Memory Consolidation, and Amnesia." In J. Davis, 
R. Newburgh, and E. Wegman (eds.) Brain Structure, Learning, and Memory. 
AAAS Selected Symposium no. 105. Boulder, Colo.: Westview Press, 1988. 

Chinitz, B. "The Effect of Transportation Forms on Regional Economic Growth." 
In G.J. Karaska and D.P. Bramhall (eds.) Locational Analysis for Manufactur­
ing, 83-96. Cambridge: MIT Press, 1969. 

Greenwood, M. "An Analysis of the Determinants of Geographic Labor Mobility in 
the United States." Review of Economics and Statistics 51 (2) (1969), 189-194. 

Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory. New York: 
John Wiley, 1949. 

Hertz, J., A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computa­
tion. Lecture Notes, Vol. 1. Reading, Mass.: Addison-Wesley Publishing 
Co., 1991. 

Herzog, H., and A. Schlottman. "Worker Displacement and Job-Search: A Regional 
Analysis of Structural Impediments to Reemployment." Journal of Regional 
Science 35 (4) (1995), 553-577. 

___ . "Moving Back vs. Moving On: The Concept of Home in the Decision to 
Remigrate." Journal of Regional Science 22 (1) (1982), 73-82. 

___ . "Labor Force Migration and Allocative Efficiency in the United States: 
The Roles of Information and Psychic Costs." Economic Inquiry 19 (3) 
(1981), 43-56. 

Herzog, H., T.P. Boehm, and A. Schlottman. "Migration as Spatial Job-Search: A 
Survey of Empirical Findings." Regional Studies 27 (4) (1993), 327-340. 

Hoover, E.M. The Location of Economic Activity. New York: McGraw Hill, 1948. 
Hopfield, J.J. "Neurons with Graded Response have Collective Computational 

Properties Like those of Two State Neurons." Proceedings of the National 
Academy of Science USA 81 (1984), 3088-3092. 

___ . "Neural Networks in Physical Systems with Emergent Collective Com­
putational Abilities." Proceedings of the National Academy of Science USA 79 
(1982), 2554-2558. 

Hopfield, J.J., and D.W. Tank. "Neural Computation of Decisions in Optimization 
Problems." Biological Cybernetics 52 (1985), 141-154. 

Hotelling, H. "Stability in Competition." In R.D. Dean, W.H. Leahy, and D.L. McKee 
(eds.) Spatial Economic Theory, 103-118. New York: The Free Press, 1970. 



324 Wier and Phoha The Review of Regional Studies 2002, 32(2) 

Isard, W. Location and Space-Economy. New York: Published jointly by the Techni­
cal Press of MIT and Wiley, 1956. 

Kau, J., and C.F. Sirmans. "The Influence of Information Costs and Uncertainty on 
Migration: A Comparison of Migration Types." Journal of Regional Science 
17 (1) (1977), 89-96. 

Levy, M., and W. Wadycki. "The Influence of Family and Friends on Geographic 
Labor Mobility: An International Comparison." Review of Economics and 
Statistics 55 (2) (1973), 198-203. 

Moses, L. "Location and the Theory of Production." In RD. Dean, W.H. Leahy, 
and D.L. McKee (eds.) Spatial Economic Theory, 59-71. New York: The Free 
Press, 1970. 

Palander, T. Beitrage zur Standortstheorie. Uppsala, Sweden: Almquist Och Wiksells 
Botryckeri-a.-b., 1935. 

Phoha, V., and W.J.B. Oldham. Corrections to "Image Recovery and Segmentation 
using Competitive Learning in a Layered Network." IEEE Transactions on 
Neural Networks 7 (6) (1996a), 1547-1548. 

___ . "Image Recovery and Segmentation using Competitive Learning in a Lay­
ered Network." IEEE Transactions on Neural Networks 7 (4) (1996b), 843-856. 

Smith, D. Industrial Location: An Economic Geographical Analysis. New York: Wiley, 
1971. 

Weber, A. Theory of the Location of Industry. Chicago: University of Chicago Press, 
1928. 

Zurada, J.M. Introduction to Artificial Neural Systems. St. Paul, Minn.: West Pub­
lishing Co., 1992. 


