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Abstract 
 
This paper investigates the extent to which innovative activity in a metropolitan area is affected by 
knowledge spillovers in the neighboring metropolitan areas as well as in the metropolitan area 
itself. The spatial econometric analysis shows that innovative activity in a metropolitan area is 
positively affected by both specialization and diversity externalities in high technology industries 
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metropolitan boundaries. In addition, this study finds that high technology specialization 
externalities are more localized than high technology diversity externalities. 
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1.  INTRODUCTION 

During the last decade there has been considerable interest in explaining the endoge-
nous process of technological change in economic growth.  As noted in endogenous 
growth theory, technological knowledge becomes a partly private and partly public good 
(Grossman and Helpman 1991; Romer 1990).  Innovations can be patented by firms, 
which gives them the exclusive right to produce new goods.  But at the same time 
innovations generate new knowledge that is freely available to all firms.  This in turn will 
enable the receiving firms to use it in their own production and innovation process, again 
creating new knowledge that can spill over to other firms.  As a consequence of this 
reciprocal and cumulative process, returns to innovation may be non-decreasing or even 
increasing for the economy as a whole.   

 
The role of knowledge spillovers that generate increasing returns has been a central 

theme in the new theory of endogenous growth (Grossman and Helpman 1991; Lucas 
1988; Romer 1986; Romer 1990).  An interesting aspect of this work, from a theoretical 
as well as an empirical perspective, has been the renewed attention to the geography of 
knowledge spillovers.  Such attention to the issue of geography rests ultimately upon the 
recognition of the essential importance of knowledge spillovers and spatially bounded 
increasing returns in promoting the geographic concentration of innovative activities and 
uneven economic growth.  

 
For regional scientists, the new growth theory has been of particular interest because 

it helps overcome the long-lasting divide between convergence approaches of neo-
classical theory (Borts and Stein 1964; Solow 1956) and polarization approaches of 
cumulative causation theory (Hirschman 1958; Kaldor 1970; Myrdal 1957).  However, 
the mechanisms by which knowledge spillovers occur at the regional level are not well 
understood, especially in terms of their geographic characteristics.  As Malecki (1983, p. 
95) states, “innovation may be the most important and the least understood aspect of the 
concept of spatially unbalanced growth.”  

 
Although several recent empirical studies have provided evidence on the extent of 

localized, spatially mediated knowledge spillovers (Acs, Anselin, and Varga 2002; 
Anselin and Varga 1997; Anselin, Varga, and Acs 2000a; Anselin, Varga, and Acs 
2000b; Jaffe, Trajtenberg, and Henderson 1993; Varga 2000), these studies have not 
established the relative importance of the various forms of knowledge externalities on 
innovative activity in metropolitan areas.  On the other hand, while there have been 
several important contributions that stress the different roles of those forms of knowledge 
spillovers (Beardsell and Henderson 1999; Black and Henderson 1999; Glaeser et al. 
1992; Henderson, Kuncoro, and Turner 1995), most studies along this line have focused 
on overall employment growth in metropolitan areas; they do not consider the different 
roles of knowledge spillovers in explicitly fostering innovative activity.  It is preferable to 
investigate the effects of knowledge externalities on innovative performance through a 
more direct channel than employment growth.  
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A further contribution has also been made by Feldman and Audretsch (1999).  They 

attempt to link the extent of knowledge spillovers to the direct measure of innovative out-
put; however, a major shortcoming of their study is that the geographic entities in 
question have been treated as “isolated islands.”  Their approach fails to take into account 
how different regions relate to one another.  Despite the fact that knowledge externalities 
that have been identified as a key mechanism to increasing returns have explicitly 
geographic components, the role of spatial effects in the knowledge spillover process has 
been ignored in recent research.  In this context, the main objective of this study is to 
incorporate these issues in an empirical model that explicitly evaluates the extent to 
which the innovative performance in a metropolitan area is affected by the various forms 
of high technology-based knowledge externalities not only in the metropolitan area itself, 
but also in the neighboring metropolitan areas.  

 
This paper is organized into four remaining sections.  The main theories and empiri-

cal studies on knowledge spillovers and the geography of innovative activity are intro-
duced in Section 2.  Section 3 outlines the data and the definition of spatial interaction 
used in this study and provides the specific models to investigate the extent to which 
metropolitan innovative activity is related to knowledge externalities from a spatial 
econometric perspective.  In Section 4 the empirical results of the analysis are presented.  
The paper closes with a summary and concluding remarks in Section 5. 

 
2.   KNOWLEDGE SPILLOVERS AND THE GEOGRAPHY OF INNOVATIVE 

ACTIVITY 
 
2.1  Knowledge Spillovers and Agglomeration Economies 

The literature concerning agglomeration of firms can roughly be divided into two 
camps.  One camp argues that knowledge spillovers should not be assumed to be the 
typical reason for the localization of industries – even in high technology industries 
themselves (Krugman 1991a; Rauch 1993), while the other camp argues that knowledge 
spillovers are the prominent reason behind the clustering of high technology firms 
(Anselin and Varga 1997; Anselin, Varga, and Acs 2000a; Anselin, Varga, and Acs 
2000b; Audretsch and Feldman 1996; Feldman 1994; Feldman and Florida 1994; Jaffe 
1989; Jaffe, Trajtenberg, and Henderson 1993).  

 
In the first view, the reasons behind the observed agglomeration of high technology 

industries are the same as the reasons why industries in general tend to cluster.  
According to Krugman (1991b), every manufacturing firm tends to locate in the region 
with larger demand in order to realize economies of scale while minimizing transport 
costs, but the location of demand itself depends on the distribution of prior manufacturing 
activity.  The basic story of geographic concentration relies on the interaction of three 
parameters:  increasing returns, transportation costs, and demand for manufacturing 
goods (Krugman 1991b).  Although Krugman invokes certain types of Marshallian 
externalities, he mainly concentrates on “pecuniary” externalities that can be measured 
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and modeled rather than on more “elusive” spillovers of technological knowledge (Acs 
and Varga, 2002; Martin and Sunley, 1996).  

 
The second group of theorists places greater emphasis on knowledge spillovers.  In 

this literature, it is assumed that despite modern communication technologies, frequent 
face-to-face contact and intensive interaction is still an important channel of knowledge 
spillovers due to the tacitness of much innovative knowledge.  As Marshall (1920) argued 
earlier, such knowledge spillovers tend to be geographically bounded within the region 
where the new technological knowledge was created (Audretsch and Feldman 1996; 
Feldman and Florida 1994; Jaffe, Trajtenberg, and Henderson 1993).  The geographic 
proximity of people in large cities or in regions with specialized industries, in turn, 
enables knowledge to circulate more readily, which again generates externalities that 
enhance innovation and productivity.  Thus, there is a self-reinforcing circularity that 
tends to keep a geographic cluster of innovative activity durable over time.  Indeed, these 
externalities are likely to play a particularly acute role in determining geographic 
concentration of high technology industries.  

 
The literature also distinguishes between two main sources of externalities.  The first 

concerns specialization externalities, which operate mainly within a specific industry, 
associated to the contributions by Marshall (1920).  Marshall observes that industries 
specialize geographically because proximity favors the intra-industry transmission of 
knowledge.  The second concerns diversity externalities that favor the creation and 
transmission of new ideas across industries, as originally suggested by Jacobs (1969).  
Jacobs believes that the density and variety of local activities plays a major role in the 
innovation process.  With the effects of specialization and diversity externalities, 
innovating firms have strong incentives to cluster together to take advantage of the 
various positive agglomeration economies spawned by geographic proximity.  This 
geographic concentration of innovative activity is the consequence of the clustering of 
these innovative firms.  High technology firms, for instance, indicate that they choose 
locations with proximity to labor, academic institutions, and favorable economic climates.  
The importance of knowledge spillovers suggests that firms’ innovative activities do not 
proceed in isolation, but are supported by external sources.  

 
2.2 Empirical Findings on Knowledge Externalities and the Geography of 

Innovative Activity 
 

Based on such theoretical developments, a number of empirical studies have recently 
attempted to measure the extent to which knowledge spillovers take place and to explore 
the fundamental question of whether and to what extent knowledge externalities are 
spatially localized.  One contribution in the literature employs a knowledge production 
function framework.  Jaffe, Trajtenberg, and Henderson (1993) find that patent citations 
tend to occur more frequently within the same state and metropolitan area in which they 
were patented than outside of the host region and that these effects are particularly 
significant at the local level.  Audretsch and Feldman (1996) examine the extent to which 
industrial activity clusters geographically and to link this geographic concentration to the 
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existence of knowledge spillovers.  Their results suggest that the propensity of innovative 
activity to cluster geographically tends to be more attributable to the role of knowledge 
spillovers and not merely the geographic concentration of production.  

 
More recently, Anselin and Varga (1997) and Anselin, Varga, and Acs (2000a; 

2000b), using measures of significant innovations for 125 metropolitan areas, investigate 
the issue of local geographic spillovers between university research and innovative 
activity by small high technology firms.  They measure knowledge spillovers through a 
set of spatially lagged variables designed to capture the effect of university and private 
R&D in counties surrounding a metropolitan area within a given distance band from the 
center of the area.  Their results show that spillovers of university research have a 
positive, significant impact on regional innovation.  Varga (2000) also provides formal 
evidence of a positive effect of agglomeration on local knowledge transfers from 
universities to high technology innovations, within the knowledge production function 
framework.  He finds that concentration of high technology employment in a region is the 
most important agglomeration factor promoting knowledge spillovers from universities. 

 
A second strand of empirical research has emerged in the literature focusing on the 

relationship between economic growth in cities and two key structural elements of 
knowledge spillovers:  the degree of industrial diversity versus specialization and the 
degree of monopoly versus competitive market structure.  Two important papers that 
empirically test these alternative hypotheses are by Glaeser et al. (1992) and Henderson, 
Kuncoro, and Turner (1995).  These studies use employment data to measure growth but 
reach different conclusions, particularly regarding effects of specialization versus diver-
sity.  Glaeser et al. (1992) find that employment growth is enhanced by diversity across a 
broad range of industries.  Using a more detailed sectoral breakdown, Henderson, 
Kuncoro, and Turner (1995) find evidence consistent with both specialization and diver-
sity views, depending on whether mature or high technology industries are considered.  
For mature industries there is evidence for specialization externalities but not for diver-
sity externalities.  However, for high technology industries both channels of knowledge 
externalities are found, suggesting that high technology industries benefit from large, 
diverse agglomerations; but with maturity production decentralizes to smaller, more 
specialized cities according to the concept of spatial-temporal product cycles.  Using 
panel data for the contiguous U.S. states, Partridge and Rickman (1999) directly relate 
measures of externalities to state labor productivity differences, decomposing them into 
industry mix effects and competitiveness effects.  They find that positive static 
specialization externalities within industry dominate static diversity externalities that 
result from a diverse range of industries.  In addition, Black and Henderson (1999) and 
Beardsell and Henderson (1999) find faster growth and more innovation when more 
economic activity is specialized in a single sector. 

 
An important refinement has been made by Feldman and Audretsch (1999).  They 

attempt to link the extent of specialization versus diversity of economic activities to the 
direct measure of innovative output.  In order to test the hypothesis that specialization or 
diversity is more conducive to innovative output and subsequent economic growth, they 
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estimate a model where the dependent variable is innovative output measured as signifi-
cant innovations and the explanatory variables are the measures of specialization, 
science-based diversity, and local competition.  By focusing on innovative activity for 
particular industries at specific locations, they find evidence that specialization does not 
promote innovative output.  The results indicate that diversity across complementary 
industries sharing a common science base is more conducive to innovation than speciali-
zation.  In addition, the results indicate that the degree of local competition for new ideas 
within a city is more conducive to innovative activity than is local monopoly.  

 
While endogenous regional growth theory represents one of the most important 

advances in regional economics in the past decade, the lack of agreement on the relative 
importance of specialization and diversity gives an ambiguous message regarding policy 
choices to promote innovation and economic growth in metropolitan areas.  This analysis 
will join together these strands of empirical research to relate these hypotheses to the 
crucial issues of spatial patterns of innovation intensity across metropolitan areas.  

 
3.  SPATIAL ECONOMETRIC MODEL SPECIFICATIONS  
 
 The main purpose of this study is to evaluate empirically the extent to which the 
innovative performance in a metropolitan area is affected by different channels of knowl-
edge externalities in high technology industries, incorporating a spatial econometric 
approach.  As already noted, it is preferable to test the effects of knowledge externalities 
on innovative performance rather than indirect effects proxied by employment growth.  
Therefore, innovative performance, defined as patents per employed worker, is the 
dependent variable in the models to be presented.  As a crucial and new addition to the 
literature, this study will explicitly deal with the geography of knowledge spillovers by 
testing for the relationship of spatial interdependence on metropolitan innovative 
performance. 
 
3.1  Data and Spatial Weights Matrix 

Patent statistics are most widely used as an indicator of innovative output of a region.  
Using patent statistics as a proxy for innovative output has several disadvantages 
(Griliches 1990).  The main disadvantage of patent statistics lies in the problem that 
simple patent counts do not take into account differences in the quality and economic 
impacts of patents on actual innovation.  However, these differences do not form a major 
concern since the spatial distribution of patents still gives valuable information about the 
degree of innovativeness of a region.  The correlation analysis indicates a very tight 
association (r = 0.934) between patents and innovation (Feldman and Florida 1994).  In 
addition, using an exploratory and a regression-based comparison of the innovation count 
data and data on patent counts, Acs, Anselin, and Varga (2002) find that the measure of 
patented inventions provides a good representation of innovative activity.  Thus, this 
paper employs patent statistics to analyze metropolitan differences in innovative perform-
ance.  The data on patents are obtained from the United States Patent Grants by State, 
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County, and Metropolitan Area (1990-1999), reported by the U.S. Patent and Trademark 
Office.1  

 
Despite general agreement on the concept of high technology, there is no general 

acceptance of precisely which industries to include.  This study employs the definition of 
high technology made in Hecker (1999), which focuses on the proportion of employment 
in an industry accounted for by scientific, technical, and engineering personnel and on the 
proportion of employment in an industry accounted for by scientific, technical, and 
engineering personnel specifically engaged in research and development.  Based on these 
criteria, 31 three-digit industries, 27 in manufacturing and four in services, were selected.  
Table 1A in the Appendix provides the list of these industries.  The data set was based on 
the 1990 edition of County Business Patterns (CBP), produced by the Bureau of the 
Census.  The data set constructed in this study contains the information on employment 
and number of establishments by three-digit industry for every metropolitan area.  In 
cases where a county-industry has only a few establishments, CBP does not reveal the 
exact number of employment in that county-industry to maintain confidentiality.  Instead, 
it typically presents the range in which the employment in the county-industry lies.  In 
order to fill in numbers for those censored counties where employment is suppressed, the 
data set was constructed based on 1990 Comprehensive Employment Data from the 
Regional Research Institute at West Virginia University. 

 
Previous empirical studies of the spatial distribution of innovation use states as their 

observational units (Audretsch and Feldman 1996; Feldman 1994; Feldman and Florida 
1994).2  Although states may be the most relevant policy-making units concerned with 
fostering innovative activity within their boundaries, they may be regarded as arbitrary 
economic units.  As Krugman (1991a, p. 57) emphasizes, “states aren’t really the right 
geographical units,” because of the lack of concordance between economic market and 
political units.  When data are aggregated to the state levels, the high degree of spatial 
aggregation might mask the existence of different economic trajectories below the state 
level.  

 
Even if Metropolitan Statistical Areas (MSAs) cover only 836 counties among all 

3,141 counties in the nation, they are less arbitrary economic units than states.  In many 
respects, the U.S. economy is really a collection of metropolitan economies linked to a 
national system.  In the theoretical context that spatial processes occur within the 
boundaries of geographic areas characterized by functional linkages and dependencies, 
spatial units that are more disaggregated than states are likely to be more appropriate to 
study the nature of knowledge spillovers that are supposed to be locally bounded (Varga 
1998).  If knowledge spillovers are important to innovative activity, they should be more 
easily identified in metropolitan areas where many people are concentrated into a rela-
tively small geographic space so that knowledge can be transmitted between them more 

 
1 For more detailed description on patent data, see Worgan and Nunn (2002). 
2 Anselin and Varga (1997) made a seminal contribution by utilizing data for 125 metropolitan 
areas.  
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easily.3  Therefore, this study is based on data covering 313 MSAs in the contiguous U.S. 
states, consisting of all 243 MSAs, 59 Primary Metropolitan Statistical Areas (PMSAs), 
and 11 New England Consolidated Metropolitan Areas (NECMAs) as defined by the 
Office of Management and Budget as of July 1996. 

 
For specifying spatial relationship in a set of geographic units, the concept of 

neighborhood has to be quantified.  Given any predefined method to determine the 
neighborhood relation for n geographic units, we have an (n × n) matrix to capture the 
spatial relationship among the n geographic units.  This matrix is called a spatial weights 
matrix W, which indicates the form of spatial interaction or dependence that is assumed 
to hold.  The traditional approach relies on the geography or spatial arrangement of the 
units, designating geographic units as neighbors when they share a common border 
(simple binary contiguity) or are within a given distance of each other; i.e., wij = 1 for 
dij ≤  δ, where dij is the distance between geographic units i and j, and δ is a distance 
cutoff value (distance-based binary contiguity).  More generally, the spatial weights may 
be specified to express any measure of potential interaction between geographic units i 
and j (Anselin 1988; Cliff and Ord 1981).  This may be related directly to spatial 
interaction theory and the notion of potential, with wij = 1/dij

α or wij = exp(−βdij).  In these 
spatial weights, the strength of spatial interaction between two geographic units is 
inversely proportional to the distance between the units.  

 
 However, these spatial weighting schemes do not consider the masses of geographic 
units.  It is reasonable to assume that regions with large economies will be influential, 
having an effect on remote regions because of extensive trade, capital, and labor market 
linkages (Isard 1956, 1998).  For example, innovative activity in a metropolitan area 
ranked in the lower hierarchy of knowledge accumulation will depend on innovative 
activity in metropolitan areas with larger accumulation of knowledge (Echeverri-Carroll 
and Brennan 1999; Hansen 2001).  In general, it is not only geographic proximity that 
leads to spatial interaction or spatial diffusion between geographic units, but also contacts 
between geographic units through communication, migration, transactions, and any other 
type of economic relationship.4  
 
 In order to capture these phenomena, different approaches have to be suggested to 
generalize the concept of spatial interaction or spatial diffusion of knowledge and thus to 
allow for economically viable interpretations of spatial interaction matrices (Cliff and 
Ord 1981; Fingleton 2001).  In this study, therefore, the measure of spatial interaction of 
                                                 
3 Innovative activity measured by patent counts is highly concentrated in metropolitan areas.  
More than 90 percent of the total number of patents (1990-1999) were granted within metropolitan 
areas (U.S. Patent and Trademark Office). 
4 An analysis of Internal Revenue Service data reveals that metropolitan areas are increasingly 
linked by common knowledge and industries.  For example, the top ten metropolitan areas 
contributing people to Austin TX from 1992 through 2000 are Los Angeles-Long Beach CA, San 
Jose CA, Chicago IL, Phoenix-Mesa AZ, Washington DC-MD-VA-WV, San Diego CA, Orange 
County CA, Boston MA-NH, Denver CO, and Atlanta GA. Like Austin, most of these areas are 
also high technology centers (Austin American-Statesman, August 4, 2002). 
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innovative knowledge between metropolitan areas i and j is extended to accommodate 
scale and distance effects into the spatial weights matrix via the following specification. 
 

(1) δ

ηθ

ij

ji
ij d

QQ
w = ,             

 
where Qi and Qj are the size proxies for innovative intensity of metropolitan areas i and j, 
respectively, and dij is the distance between metropolitan areas i and j.  Given the size of 
innovative intensity of metropolitan area i, the spatial interaction with metropolitan area j 
is likely to be stronger if metropolitan area j possesses a larger innovative intensity.  The 
spatial weight wij between two metropolitan areas i and j is proportional to innovative 
forces between these metropolitan areas, as proxied by the product of their average 
patents per 100,000 workers (1990-1999) divided by the δth power of the distance dij 
between two metropolitan areas.  This weighting scheme of spatial interaction says that 
spatial interaction of innovative activity between two metropolitan areas declines as the 
distance between the two metropolitan areas increases; however, it increases with 
innovative intensity of a neighboring metropolitan area.  Although the parameters should 
be estimated, this study a priori assumes θ = η = 1 and δ = 2 for a standard gravity effect 
based on the Newtonian analogy (Sen and Smith 1995).  In empirical analysis, however, 
the scale parameters θ and η and the distance decay parameter δ are generally interpreted 
as the responsiveness of spatial interaction to scale and distance effects, respectively, and 
are expected to vary in terms of socio-economic context (Haynes and Fotheringham 
1984).  In this study, sensitivity analysis is employed to determine how sensitive a model 
is to changes in the values of the parameters of the spatial weights.  
 
3.2  Base Model 

To reflect the extent to which the high technology industry sector within a metropoli-
tan area is specialized, this study includes as an explanatory variable a measure of 
specialization for high technology employment.  This measure is defined as the share of 
total employment in the metropolitan area accounted for by high technology employment 
in the area relative to the share of total employment accounted for by that high technol-
ogy industry sector in the United States.  A higher value of this measure indicates a 
greater-than-average degree of specialization of the high technology industry sector in 
that particular metropolitan area.  Thus, a positive coefficient of this variable would indi-
cate that increased specialization of the high technology industry sector within a 
metropolitan area is conducive to greater innovative activity. 

 
To address Jacobs’ theory, we need a measure of the diversity of industries in a 

metropolitan area.  A common measure of diversity is the inverse of a Hirschman-
Herfindahl index or the Herfindahl equivalent index (Ellison and Glaeser 1997; 
Henderson, Kuncoro, and Turner 1995).  However, an interesting extension is the assess-
ment of the impact of high technology diversification versus general industrial diversity 
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(Cortright and Mayer 2001; Chapple et al. 2004).  Metropolitan areas that are more 
diversified within high technology industries may find themselves better positioned in 
performing innovative activity.  Various sources of innovation, cross-fertilization of 
different ideas, local backward-forward linkages, and interfirm networks within more 
diversified high technology industries may produce continuing innovative capacity in a 
metropolitan area, which may generate a higher rate of innovation in the metropolitan 
area.  In order to identify the impact of diversification within the high technology 
industry sector, the presence of diversity in the high technology industries is included.  In 
this study, therefore, the diversity measure is given by DIV = 1/ Σ j sj

2, where sj denotes 
the share of total high technology employment in a metropolitan area attributable to high 
technology industry j in the metropolitan area.  If a metropolitan area is fully concen-
trated in a single high technology industry, we find DIV = 1; this index increases as high 
technology activities in this metropolitan area become more diverse.  This indicator 
reflects the sectoral diversity within the high technology industries in a metropolitan area.  
Therefore, it is not necessarily negatively associated with the high technology specializa-
tion in the metropolitan area.  A positive coefficient of this variable would indicate that a 
greater diversity among high technology industries is conducive to greater innovative 
activity.  

 
In measuring the extent of localized high technology competition, this study employs 

a measure used by Glaeser et al. (1992), which is defined as the number of establishments 
per worker in the metropolitan high technology industries divided by the number of 
establishments per worker in the high technology industries in the United States.  A 
higher value of this indicator means that the high technology industry sector has more 
establishments relative to its employment size in this metropolitan area than it does in the 
United States.  Following Porter (1990), a positive coefficient of this variable would indi-
cate that increased localized high technology competition within a metropolitan area is 
conducive to greater innovative activity.  However, the impact of local competition in 
high technology industries on innovative activity might be ambiguous.  Indeed, as 
Schumpeterian innovation models emphasize, competition gives firms incentives for 
devoting resources to R&D investment; but if the diffusion of innovations or geographic 
knowledge spillovers are too fast, economic profit from R&D investment decreases, 
which reduces the incentives for R&D investment.  In this way, competitive market 
structure might have a negative impact on innovations.  

 
As a result, the base model to be estimated in this study can be expressed as: 
 

(2) INNOV = β0 + β1 SPEC + β2 DIV + β3 COMP + ε, 
 
where INNOV is an (n × 1) vector of a proxy for innovative intensity (i.e., innovative 
output per worker), SPEC a vector of high technology specialization, DIV a vector of 
high technology diversity, COMP a vector of local competition in high technology 
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industries, and ε a vector of error terms.5  However, when models are estimated for cross-
sectional data on spatial units, ignoring lack of independence across these units can cause 
serous problems of model misspecification (Anselin 1988).  Also theories of innovation 
and empirical evidence suggest that urban proximity and neighborhood spillover effects 
are likely to be significant.  Three kinds of spatial econometric models can be used to 
deal with spatial dependence of observations:  the spatial lag model, the spatial error 
model, and the spatial cross-regressive model (Anselin 1988; Anselin and Bera 1998; 
Florax and Folmer 1992).  
 
3.3  Spatial Lag Model 
 

In the spatial lag model, spatial autocorrelation of observations is treated by incorpo-
rating an endogenous spatial lag variable. The structural model is written in the following 
form. 

 
(3) y = ρWy + Xβ + ε,  ε ~ N (0, σ2I), 
 
where y is an (n × 1) vector of observations on a dependent variable, Wy an (n × 1) vector 
of observations on a spatially lagged dependent variable for an (n × n) spatial weights 
matrix W, ρ a spatial autoregressive coefficient, X an (n × k) matrix with observations on 
the exogenous explanatory variables, β a (k × 1) vector of corresponding coefficients, and 
ε an (n × 1) vector of independent disturbances.  The resulting endogenous spatial lag Wy 
can be considered to be a spatially weighted average of the observations at neighboring 
locations.  Hence, the corresponding spatial lag model to be estimated in this study is 
given by: 
 
(4) INNOV = ρWINNOV + β0 + β1 SPEC + β2 DIV + β3 COMP + ε,  ε ~ N (0, σ2I), 

where WINNOV is a spatially lagged dependent variable for a spatial weights matrix W, ρ 
a spatial autoregressive parameter, and ε a vector of spherical error terms.  
 
 From a spatial filtering perspective (Anselin and Bera 1998), the spatial lag model 
may be expressed as: 
 
(5) (I − ρW)y = Xβ + ε,  
 
where (I − ρW)y is a spatially filtered dependent variable, i.e., with the effect of spatial 
autocorrelation filtered out.  More specifically, the spatial regression model (4) can be 
expressed as: 
 
(6) (I − ρW)INNOV = β0 + β1 SPEC + β2 DIV + β3 COMP + ε,  ε ~ N (0, σ2I). 
 

 
5 This study includes a human capital variable as a control in the regression.  This is further 
discussed in the next section. 
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From equation (6), the spatial lag model allows for the proper interpretation of the 
significance of the exogenous variables, after the spatial effects have been corrected for 
or filtered out. 
 

The presence of the spatially lagged dependent variable Wy on the right-hand side of 
equation (3) will induce a nonzero correlation with the error term.  [Wy]i is always corre-
lated with εi, irrespective of the correlation structure of the errors.  The spatial lag for a 
given observation i is not only correlated with the error term at i, but also with the error 
terms at all other locations.  Therefore, ordinary least squares (OLS) estimation of the 
spatial lag model specification yields biased and inconsistent estimates for the coef-
ficients due to the simultaneity between the error terms and the spatially lagged depend-
ent variable.  Instead, alternative estimators based on maximum likelihood (ML) and 
instrumental variables (IV) have been suggested to provide consistent estimators (Anselin 
1988; Anselin and Bera 1998; Conley 1999; Kelejian and Prucha 1998; Kelejian and 
Robinson 1993). 

 
3.4  Spatial Error Model 
 

The second form of spatial dependence is relevant when the spatial dependence 
works through the error process rather than endogenously through the dependent variable. 
Spatial error dependence may be interpreted as a nuisance since it reflects spatial 
autocorrelation in measurement errors.  It can also be interpreted as spatial autocorrela-
tion in variables that are otherwise not crucial to the model in the sense that the ignored 
variables spillover across the spatial unit of observation (Anselin and Bera 1998).  Spatial 
error autocorrelation is modeled as: 

 
(7) y = Xβ + ε             (6) 

ε = λWε + ξ,  ξ ~ N (0, σξ2I), 
 

where λ is the coefficient of spatially lagged autoregressive errors Wε and ξ is an (n × 1) 
vector of spherical error terms (Anselin 1988).  Taking into account the spatial auto-
correlation of the error term, the regression model to be estimated in this study becomes: 
 
(8) INNOV = β0 + β1 SPEC + β2 DIV + β3 COMP + ε     (7) 

ε = λWε + ξ,  ξ ~ N (0, σξ2I). 
 

Alternatively, from a spatial process perspective, the spatial error specification (7) 
may be expressed as: 

 
(9) y = Xβ + (I − λW)−1ξ,  ξ ~ N (0, σξ2I), 
 
and the corresponding spatial regression model (7) can be re-expressed as: 
 
(10) INNOV = β0 + β1 SPEC + β2 DIV + β3 COMP + (I − λW)−1ξ,  ξ ~ N (0, σξ2I). 
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From equation (10), it is evident that a random shock introduced into a specific 
metropolitan area will not only affect the innovative activity in that metropolitan area, but 
also will affect the innovative performance of other metropolitan areas through the 
inverse spatial transformation (I − λW)−1.  The effects of the random shock will diffuse 
throughout the entire regional system through the spatial multiplier effect, which yields a 
Leontief expansion:  (I − λW)−1 = I + λW + λ2W 2 + λ3W 3 + · · · (Anselin and Bera 1998). 
 

OLS estimation in the presence of non-spherical errors yields unbiased estimates, but 
a biased estimate of the parameter’s variance.  Thus, inference based on the OLS esti-
mates may be misleading.  Instead, inferences should be based on the spatial error model 
estimated by ML or generalized method of moments (GMM) (Anselin 1988; Anselin and 
Bera 1998; Conley 1999; Kelejian and Prucha 1999). 

 
3.5  Spatial Cross-Regressive Model 
 

In addition, we can also construct spatially lagged exogenous variables that are 
designed to explicitly capture the substantive spillover effects that flow across metro-
politan boundaries.  Such a spatial lag of an explanatory variable is a spatially weighted 
average of the values in neighboring metropolitan areas. The structural form of the spatial 
cross-regressive model is written as: 

 
(11) y = Xβ + WX*γ + ε,  ε ~ N (0, σ2I), 
 
where X* is an (n × (k −1)) matrix of explanatory variables with the constant term deleted, 
and γ is a ((k −1) × 1) vector of respective coefficients.  The spatial cross-regressive 
model to be estimated in this study is expressed as: 
 
(12)  INNOV = β0 + β1 SPEC + β2 DIV + β3 COMP + γ1 WSPEC + γ2 WDIV  
 + γ3 WCOMP + ε 

ε ~ N (0, σ2I), 

where WSPEC, WDIV, and WCOMP are spatially lagged variables of SPEC, DIV, and 
COMP, respectively, for a spatial weights matrix W.  Whereas the spatially lagged 
endogenous variable in equation (4) might cover all forms of spillovers, the spatially 
lagged explanatory variables in equation (12) are limited to the spatial effects via the 
three mechanisms of knowledge spillovers.  Thus, equation (12) allows more specific 
results of knowledge spillover mechanisms, i.e., it gives estimates of both direct effects 
and spatial lagged effects of the three mechanisms in the process of knowledge spillovers.  
Because the original explanatory variables and the spatially lagged explanatory variables 
are exogenous, estimation of the spatial cross-regressive model can be based on OLS.  
 

This study proceeds by first estimating β by means of OLS regression of equation (2).  
Based on the OLS residuals and a series of diagnostics for spatial effects, a spatial 
dependence model is implemented where appropriate.  
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4.  ESTIMATION RESULTS  

Table 1 presents the estimation results for the alternative models of metropolitan 
innovative intensity (i.e., number of patents per 100,000 workers) in metropolitan areas, 
using a database of 313 observations.6  Column (1) of Table 1 contains the simple 
descriptive statistics.  One concern regarding the estimation of the model is that 
metropolitan areas with proportionately more knowledgeable people might be expected to 
generate a greater intensity of innovative activity, ceteris paribus, because knowledge 
spillovers are geographically limited to the metropolitan area and much knowledge is 
most productive in the metropolitan area within which it is acquired (Black and 
Henderson 1999; Glaeser, Scheinkman, and Shleifer 1995; Lucas 1988; Rauch 1993; 
Simon 1998; Simon and Nardinelli 2002).  Thus, this study includes as a control in the 
regressions a human capital variable, measured by the percentage of college graduates as 
a share of population over 25 years old.  Including the human capital variable is expected 
to have a positive sign because a high proportion of more educated people leads to 
greater intensity of innovative activity in metropolitan areas.  

 
The base model confirms the significance of the two channels of knowledge spill-

overs, specialization and diversity, on the intensity of innovative activity in a metropoli-
tan area.  As shown in Column (2) of Table 1, the coefficients on the high technology 
specialization and diversity are positive and highly significant (p < 0.001); however, the 
local competition in high technology industries has a negative but insignificant effect on 
innovative activity.  The result on specialization differs from Feldman and Audretsch 
(1999).  They obtained a negative impact of specialization on innovative activity. How-
ever, the measures used in this paper are slightly different from those used in their study.  
In order to evaluate the extent to which metropolitan innovative performance is affected 
by the various forms of high technology-based knowledge externalities, this study uses a 
measure of specialization for high technology employment and a measure of diversifica-
tion within the high technology industry sector.  However, the result in this analysis is 
consistent with Henderson, Kuncoro, and Turner (1995), although they observe the 
effects of knowledge externalities indirectly through examination of employment growth.  
For high technology industries both channels of knowledge externalities are found to be 
significant.  High technology specialization in a metropolitan area facilitates innovation 
in the metropolitan area.  In addition, various sources of innovation, cross-fertilization of 
different ideas, local backward-forward linkages, and interfirm networks within more 
diversified high technology industries produce continuing innovative capacity in a 
metropolitan area, which generates a higher rate of innovation in the metropolitan area.  
As expected, the coefficient on the human capital variable is positive and highly signifi-
cant (p < 0.001), indicating that a higher level of human capital generates a greater 
intensity of innovative activity through more localized spillovers in a metropolitan area.  

                                                 
6 As there is no compelling a priori functional form, this study implements a log specification, 
which allowed us to correct for non-normality of error terms in the starting linear specification. 
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TABLE 1  

Regression Results for Metropolitan Innovative Activity 1990 (θ = η = 1, δ = 2) 

Model (1) Descriptive 
Statistics (2) Base Model (3) Spatial Lag Model (4) Spatial Cross-

Regressive Model 

Estimation Means 
(Std. dev.) 

OLS 
Robust ML Robust IV 

(2SLS) 
OLS 

Robust 
Constant  1.257** 0.696** 0.696* 0.522 
  (0.199) (0.259) (0.322) (0.320) 
ρ   0.199** 0.231*  
   (0.070) (0.095)  
Specialization 0.714 0.977** 0.935** 0.920** 0.959**

 (0.481) (0.134) (0.109) (0.129) (0.129) 
Diversity 6.386 0.063** 0.060** 0.058** 0.057**

 (3.127) (0.010) (0.012) (0.010) (0.010) 
Competition 1.276 −0.008 −0.015 −0.015 −0.028 
 (0.788) (0.071) (0.064) (0.068) (0.070) 
Human capital 19.667 0.036** 0.035** 0.031** 0.035**

 (6.205) (0.007) (0.007) (0.006) (0.007) 
Specialization – 
spatial lag 

    0.235
(0.159) 

Diversity –  
spatial lag 

    0.074** 

(0.025) 
Competition – 
spatial lag 

    0.143
(0.118) 

R2-adjusted  0.448  0.473 0.461 
AIC  645.728 640.015  641.322 
Breusch-Pagan   27.990**   
LM-ERR  7.994** 0.413  4.117*

Robust LM-ERR  0.881   0.517 
LM-LAG  8.147**   3.610 
Robust LM-LAG  1.034   0.010 
Notes: Estimated standard errors are in parentheses; for the base model and the spatial cross-regressive model, 
White heteroskedasticity consistent standard errors are in parentheses; ** p < 0.01 and * p < 0.05. 

 
 
For the base model, specification tests for spatial dependence are carried out using 

the Lagrange multiplier tests for spatial error dependence (LM-ERR) and spatial lag 
dependence (LM-LAG).  As evidenced in a large number of Monte Carlo simulation 
experiments (Anselin and Rey 1991), the joint use of the Lagrange multiplier tests for 
spatial lag dependence and spatial error dependence provides the best guidance for model 
specification.  If LM-LAG is significant while LM-ERR is not, then a spatial lag depend-
ence model is the likely alternative and vice versa.  However, when both LM test statis-
tics have high values indicating significant spatial dependence, the one with the higher 
robust LM test statistic tends to indicate the correct alternative.  In this model, the robust 
LM tests for spatial dependence show that there is an indication of misspecification in the 
form of spatial lag dependence.  OLS estimation of the spatial lag model specification 
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yields biased and inconsistent estimates for the coefficients due to the simultaneity 
between the error terms and the spatially lagged dependent variable.  Instead, alternative 
estimators based on ML and IV have been suggested to provide consistent estimators 
(Anselin 1988; Anselin and Bera 1998).  

 
Column (3) of Table 1 displays the results for the model that incorporates a spatially 

lagged dependent variable.  Note that with the exception of the coefficient for high tech-
nology local competition, all coefficients are highly significant (p < 0.001), including the 
parameter estimate associated with the spatially lagged dependent variable.  Compared 
with the OLS results in the base model, the spatial lag model exhibits a better overall fit 
to the data, as indicated by a decrease in the Akaike information criterion (AIC) from 
645.7 to 640.0.  In the spatial lag model, there is no evidence of spatial autocorrelation 
remaining in the residuals (p = 0.520).  This result clearly suggests that spatial depend-
ence has been adequately dealt with by incorporating the spatially lagged dependent 
variable.  

 
The results of the regression estimation can be interpreted in two ways (Anselin and 

Bera 1998).  On the one hand, it yields some information on the relationship between 
innovative activity and knowledge externalities in a metropolitan area through the 
parameters of the explanatory variables having controlled for spatial effects.  On the other 
hand, it may help to highlight the pathway whereby geographic knowledge spillover 
effects take place since it indicates how innovative activity in a metropolitan area is 
affected by that of neighboring metropolitan areas through the ρ parameter of the 
spatially lagged dependent variable, after controlling for the levels of high technology 
specialization, diversity, and local competition in the metropolitan area.  The highly 
significant coefficient for the spatially lagged dependent variable (p = 0.004) indicates 
that the geographic area of the effects of knowledge spillovers exceeds metropolitan 
boundaries.  The fact that innovative activity in a metropolitan area is positively related 
to the spatially weighted average level of innovative activity in neighboring metropolitan 
areas suggests that in addition to knowledge externalities originating in the same location, 
geographic knowledge spillovers from neighboring metropolitan areas have also 
substantial effects on innovative activity in the metropolitan area.  

 
In the spatial lag model, it is apparent that the spatial Breusch-Pagan test statistic 

indicates a strikingly significant presence of remaining heteroskedasticity (p < 0.001).  To 
mitigate this problem, this study re-estimates the spatial lag model via a heteroskedas-
ticity-robust IV or two stage least squares (2SLS) estimation.7  Neither the size of the 
estimated parameters nor their significance differs meaningfully from those of the 
previous model.  The robust IV (2SLS) spatial lag estimates continue to support the 

                                                 
7 It has been shown that in instrumental variables estimation of the spatial lag model a series of 
spatially lagged exogenous variables are the proper set of instruments for the spatially lagged 
dependent variable (Kelejian and Robinson 1993).  In this study, instruments for the spatially 
lagged dependent variable (WLNINNOV) are WSPEC, WDIV, WCOMP, and WHK. 
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importance of the effects of knowledge spillovers of high technology specialization and 
diversity on innovative performance.  

 
Given the indication that spatial interaction extends beyond a given metropolitan area, 

this study constructs three spatial lag variables to explicitly account for exogenous spatial 
effects of knowledge spillovers.  The explanatory variables in the spatial cross-regressive 
model are designed to capture the effect of specialization, diversity, and local competition, 
respectively, in high technology industries in neighboring metropolitan areas.  Specifi-
cally, for any metropolitan area i, the spatial lags [WSPEC]i, [WDIV]i, and [WCOMP]i 
represent the weighted average of specialization, diversity, and local competition in high 
technology industries in the neighboring metropolitan areas. 8   In fact, by explicitly 
including the levels of the three sources of knowledge spillovers at the neighboring 
metropolitan areas as well as for the metropolitan area, we are able to get more precise 
insights into the spatial extent of geographic knowledge spillovers.  Whereas the spatially 
lagged dependent variable in the spatial lag model might cover all forms of spillovers, the 
result of the spatial cross-regressive model regression result may provide some evidence 
on the relative significance of different forms of geographic knowledge spillovers.  

 
As shown in Column (4) of Table 1, when the spatial lag variables are added to the 

base model specification, the overall model fit improves slightly, as measured by a 
decrease in the AIC from 645.7 to 641.3, but with marginally significant spatial depend-
ence remaining (p = 0.042).  While local high technology competition in a metropolitan 
area does not have a significant effect on metropolitan innovative activity, specialization 
and diversity in high technology industries have positive, significant effects on innovative 
activity in the metropolitan area.  In addition, high technology diversity in its neighboring 
metropolitan areas has a positive, significant effect on innovative activity in the 
metropolitan area (p = 0.003).  Interestingly, however, there is no evidence that the 
effects of high technology specialization on metropolitan innovative activity spill over 
from outside the metropolitan area.  In contrast to high technology diversity, the effects 
of high technology specialization seem to be contained within metropolitan areas.  

 
These results suggest that high technology specialization externalities are more local-

ized than high technology diversity externalities, and they work only in a bounded 
metropolitan area, which may correspond to a self-contained regional system of innova-
tion.  On the other hand, it would be particularly advantageous to have the opportunity to 
explore diverse innovative technological possibilities potentially available from neighbor-
ing regions.  It seems reasonable to assume that a specific region would benefit more 
from neighbors that have diverse high technology strengths.  This could be simply a 
“search and matching” and “learning-by-searching” phenomenon (Dosi 1988; Nelson and 
Winter 1982).  There would be a higher probability that specialized producers would be 
able to acquire useful knowledge and innovations from neighboring regions with a larger 
number of potentially unique sources.  More generally, specialized producers in one 

 
8 Formally, the spatial lag [Wx]i can be obtained as:  [Wx]i = Σjwijxj, where wij is an (i, j) element of 
the spatial weights matrix W. 
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region might more readily make up for gaps in the local knowledge or skill base by 
acquiring knowledge or services from neighboring regions with diverse innovative 
strength and service offerings. 

 
One concern regarding the estimation of the model is the way in which spatial knowl-

edge spillovers between metropolitan areas are modeled into a spatial weights matrix.  As 
explained earlier, this study a priori assumed θ = η = 1 and δ = 2 for a standard gravity 
effect based on the Newtonian analogy.  However, the scale parameters θ and η and the 
distance decay parameter δ could vary in terms of socio-economic context.  In order to 
determine how sensitive the model is to changes in the values of the parameters, this 
study re-estimates the models by using alternative assumptions about the scale 
parameters and the distance decay parameter.  As shown in Tables 2 and 3, it is apparent 
that different parameter assumptions produce similar results.  In terms of the explanatory 
power of regression equation, the form of spatial dependence, and the sensitivity of 
regression coefficients to changes in the parameters of spatial weights, different 
parameter assumptions provide very similar estimation results.  Regression fits of the 
models are similar, and the structure of spatial dependence is also very similar as alterna-
tive models exhibit significant spatial lag dependence except for the assumption of 
θ = η = 2 and δ = 2.  In addition, the signs and significance of the explanatory variables 
representing the channels of knowledge spillovers follow similar patterns for alternative 
models.9  

 
5.   SUMMARY AND CONCLUSION 

Although several recent empirical studies have provided evidence on the extent of 
localized, spatially mediated knowledge spillovers, these studies have not established the 
relative importance of the various mechanisms of knowledge externalities on innovative 
activity at the level of metropolitan areas.  In light of this, this paper has investigated the 
extent to which innovative activity in a metropolitan area is affected by knowledge 
spillovers from neighboring metropolitan areas as well as in the metropolitan area itself, 
and it does so by considering a set of potential mechanisms whereby knowledge is 
spatially diffused. 

 
The main result of the analysis is that innovative activity in a metropolitan area is 

positively affected by both specialization externalities and diversity externalities in high 
technology industries.  A second important issue addressed in the analysis is the presence 
of geographic knowledge spillovers across metropolitan boundaries.  More precisely, the 

                                                 
9 Based on the assumption of θ = η = 1 and δ = 3, high technology specialization in its neighboring 
metropolitan areas has a marginally significant effect on innovative activity in the metropolitan 
area (p = 0.050).  The spatial weights based the assumption of zero weight attributed to scale (i.e., 
θ = η = 0 and δ = 2) produce a positive, significant coefficient on the spatial lag of high 
technology specialization; however, there is a significant presence of remaining spatial 
dependence. 



 

TABLE 2  

Sensitivity Analysis: Distance Effects 

 (1) θ = η = 1 and δ = 1 (2) θ = η = 1 and δ = 3 

Model Spatial Lag Model Spatial Cross-
Regressive Model Spatial Lag Model Spatial Cross-

Regressive Model 
Estimation ML Robust IV (2SLS) OLS Robust ML Robust IV (2SLS) OLS Robust 
Constant −0.505 −1.059 −0.517 0.902** 0.878* 0.736 
    

 
     

 
   

 
    

  
   

   

    

    

    

       

(0.423) (0.733) (0.616) (0.222) (0.272) (0.280)
ρ 0.572** 0.783** 0.134* 0.171*  

(0.139) (0.236) (0.052) (0.075)
Specialization
 

0.943** 0.904** 0.974** 0.935** 0.917** 0.951**

(0.108) (0.129) (0.133) (0.109) (0.130) (0.129)
Diversity 0.058** 0.055** 0.053** 0.060** 0.058** 0.059**

(0.012) (0.011) (0.010) (0.012) (0.010) (0.010)
Competition 
 

−0.012 −0.015 0.005 −0.015 −0.021 −0.034 
(0.064) (0.068) (0.073) (0.064) (0.068) (0.070)

Human capital 
 

0.035** 0.032** 0.037** 0.035** 0.033** 0.034**

(0.007) (0.006) (0.007) (0.007) (0.006) (0.007)
Specialization – 
spatial lag 

0.147
(0.476) 

0.240* 

(0.122) 
Diversity –  
spatial lag 

0.255** 

(0.061) 
0.042* 

(0.018) 
Competition – 
spatial lag 

0.057
(0.202) 

0.141
(0.094) 

R2-adj. / Sq.Corr. 0.479 0.474 0.470 0.457
AIC 637.707      

     
633.602 641.314 643.711

Breusch-Pagan 28.576** 27.605**

LM-ERR 0.916      0.901 0.127 3.522
LM-LAG       1.298 2.867
Notes: Estimated standard errors are in parentheses; for the spatial cross-regressive model, White heteroskedasticity consistent standard errors are in 
parentheses; ** p < 0.01 and * p < 0.05. 
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TABLE 3  

 Sensitivity Analysis: Scale Effects 

 (1) θ = η = 0 and δ = 2 (2) θ = η = 2 and δ = 2 

Model Spatial Lag Model Spatial Cross-
Regressive model Spatial Error Model Spatial Cross-

Regressive Model 
Estimation  ML Robust IV (2SLS) OLS Robust ML GMM (Iterated) OLS Robust 
Constant   0.545* 0.241 0.452 1.252** 1.252** 0.589 
    

    
      

 
   

 
    

   

   

    

    

    

     
      

      

(0.254) (0.348) (0.316) (0.180) (0.180) (0.342)
ρ 0.264** 0.394**

(0.070) (0.095)
Specialization
 

0.927** 0.864** 0.940** 0.940** 0.941** 0.982**

(0.107) (0.128) (0.130) (0.108) (0.108) (0.132)
Diversity 0.057** 0.053** 0.057** 0.057** 0.057** 0.056**

(0.012) (0.010) (0.010) (0.012) (0.012) (0.010)
Competition 
 

−0.013 −0.024 −0.031 −0.026 −0.025 −0.014 
(0.063) (0.068) (0.072) (0.066) (0.066) (0.069)

Human capital 
 

0.034** 0.034** 0.033** 0.038** 0.038** 0.037**

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Specialization – 
spatial lag 

0.502* 

(0.205) 
0.073

(0.159) 
Diversity –  
spatial lag 

0.058* 

(0.024) 
0.079** 

(0.024) 
Competition – 
spatial lag 

0.172
(0.115) 

0.116
(0.119) 

λ 0.220* 0.217
(0.086)

 
 −

R2-adj. / Sq.Corr. 0.488 0.462 0.455 0.462
AIC 633.947     

     
 640.831 641.042 640.687

Breusch-Pagan 27.521** 27.203**

LM-ERR 0.003     7.821** 1.113
LM-LAG     6.397*  0.388 1.527
Notes: Estimated standard errors are in parentheses; for the spatial cross-regressive model, White heteroskedasticity consistent standard errors are in 
parentheses; ** p < 0.01 and * p < 0.05. 
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spatial dependence model specifications show that there also exist geographic knowledge 
externalities across boundaries, which implies that innovative activity in a metropolitan 
area is positively influenced by the level of innovativeness of neighboring metropolitan 
areas.  Given the indication of spatial dependence in innovative activity in metropolitan 
areas, this study also constructs three spatial lag variables to explicitly account for the 
spatial effects of the three different channels of knowledge spillovers.  Interestingly, high 
technology diversity externalities in neighboring metropolitan areas have significant 
effects on innovative activity in a given metropolitan area, whereas there is no evidence 
that the effects of high technology specialization externalities on metropolitan innovative 
activity spill over from outside metropolitan areas.  This suggests that the effects of high 
technology specialization seem to be contained within metropolitan areas; in other words, 
high technology specialization externalities are more localized than high technology 
diversity externalities. 
 

In conclusion, the results of this study shed some light on the relationship between 
the process of knowledge spillovers and the industrial characteristics of the neighboring 
metropolitan areas as well as within a metropolitan area.  From the viewpoint of national 
innovation systems, what matters is not only the distribution of innovative activities 
across regions, but also the way in which regions interact with each other as elements of 
an innovation system (Edquist 1997; Lundvall 1988; Nelson and Rosenberg 1993).  
Insights into spatial dependence of innovative activity allow for more effective 
implementation of regional policies and for the possibility of regional cooperation.  In 
this respect, these findings have an important consequence for regional economic policies.  
They suggest that regional economic policy makers consider the specific geographies of 
such knowledge spillovers, and give helpful hints on how regional policy coordination 
might promote a virtuous circle of regional economic growth. 
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APPENDIX 
 

TABLE 1A High Technology Industries 
SIC Industry 
281 Industrial inorganic chemicals                        
282 Plastics materials and synthetics                    
283 Drugs    
284 Soap, cleaners, and toilet goods                     
285 Paints and allied products                            
286 Industrial organic chemicals                         
287 Agricultural chemicals                                
289 Miscellaneous chemical products                       
291 Petroleum refining                                    
348 Ordnance and accessories, nec                         
351 Engines and turbines                                  
353 Construction and related machinery                   
355 Special industry machinery                           
356 General industrial machinery                         
357 Computer and office equipment                        
361 Electric distribution equipment                       
362 Electrical industrial apparatus                      
365 Household audio and video equipment                   
366 Communications equipment                             
367 Electronic components and accessories                
371 Motor vehicles and equipment                         
372 Aircraft and parts                                   
376 Guided missiles, space vehicles, parts               
381 Search and navigation equipment                      
382 Measuring and controlling devices                 
384 Medical instruments and supplies                     
386 Photographic equipment and supplies                   
737 Computer and data processing services                
871 Engineering & architectural services                 
873 Research and testing services                        
874 Management and public relations                      

Source: Adopted from Hecker (1999). 
 



Lim: Geography of Innovative Activity   33

REFERENCES 
 
Acs, Z. J., L. Anselin, and A. Varga, 2002. “Patents and Innovation Counts as Measures 

of Regional Production of New Knowledge,” Research Policy 31, 1069-1085. 
Acs, Z.J., and A. Varga, 2002. “Geography, Endogenous Growth, and Innovation,” 

International Regional Science Review 25, 132-148. 
Anselin, L., 1988. Spatial Econometrics: Methods and Models. Kluwer Academic 

Publishers: Dordrecht, the Netherlands. 
Anselin, L., 1992. SpaceStat Tutorial: A Workbook for Using SpaceStat in the Analysis of 

Spatial Data. National Center for Geographical Information and Analysis, University 
of California: Santa Barbara, CA. 

Anselin, L., and A.K. Bera, 1998. “Spatial Dependence in Linear Regression Models 
with an Introduction to Spatial Econometrics,” in A. Ullah and D.E.A. Giles (eds.), 
Handbook of Applied Economic Statistics. Marcel Dekker: New York, NY. 

Anselin, L., and S. Rey, 1991. “Properties of Tests for Spatial Dependence in Linear 
Regression Models,” Geographical Analysis 23, 112-131. 

Anselin, L., and A. Varga, 1997. “Local Geographic Spillovers between University 
Research and High Technology Innovations,” Journal of Urban Economics 42, 422-
448. 

Anselin, L., A. Varga, and Z. J. Acs, 2000a. “Geographical Spillovers and University 
Research: A Spatial Econometric Perspective,” Growth and Change 31, 501-515. 

_____, 2000b. “Geographic and Sectoral Characteristics of Academic Knowledge 
Externalities,” Papers in Regional Science 79, 435-443. 

Audretsch, D.B., and M.P. Feldman, 1996. “R&D Spillovers and the Geography of 
Innovation and Production,” American Economic Review 86, 630-640. 

Austin American-Statesman, 2002. Cities of Ideas: Prosperity and Its Price. Available at: 
http://www/statesman.com/specialreports/citiesofideas/migration, August 4. 

Beardsell, M., and V. Henderson, 1999. “Spatial Evolution of the Computer Industry in 
the U.S.A.,” European Economic Review 43, 431-456. 

Black, D., and V. Henderson, 1999. “Spatial Evolution of Population and Industry in the 
United States,” American Economic Review, Papers and Proceedings 89, 321-327. 

Borts, G.H., and J.L. Stein, 1964. Economic Growth in a Free Market. Columbia 
University Press: New York, NY. 

Bureau of the Census, 1992. County Business Patterns 1989 & 1990 CD-ROM. U.S. 
Department of Commerce: Washington, DC. 

Chapple, K., A. Markusen, G. Schrock, D. Yamamoto, and P. Yu, 2004. “Gauging 
Metropolitan “High-Tech” and “I-Tech” Activity,” Economic Development 
Quarterly 18, 10-29. 

Cliff, A.D., and J.K. Ord, 1981. Spatial Processes: Models and Applications. Pion 
Limited: London, UK.  

Conley, T.G., 1999. “GMM Estimation with Cross Sectional Dependence,” Journal of 
Econometrics 92, 1-45. 

Cortright, J., and H. Mayer, 2001. “High Tech Specialization: A Comparison of High 
Technology Centers,” Brookings Institution Survey Series. Center on Urban and 
Metropolitan Policy, Brookings Institution: Washington, DC. 



The Review of Regional Studies, Vol. 34, No. 1, 2004, pp. 11 − 36  
  

34

 
Dosi, G., 1988. “The Nature of the Innovative Process,” in G. Dosi, C. Freeman, R. 

Nelson, G. Silverberg, and L. Soete (eds.), Technical Change and Economic Theory. 
Pinter: London, UK. 

Echeverri-Carroll, E.L., and W. Brennan, 1999. “Are Innovation Networks Bounded by 
Proximity?” in M.M. Fischer, L. Suarez-Villa and M. Steiner (eds.), Innovation, 
Networks and Localities. Springer-Verlag: Berlin, Germany. 

Edquist, C., 1997. “Systems of Innovation Approaches: Their Emergence and 
Characteristics,” in C. Edquist (ed.), Systems of Innovation: Technologies, 
Institutions, and Organizations. Pinter: London, UK. 

Ellison, G., and E.L. Glaeser, 1997. “Geographic Concentration in U.S. Manufacturing 
Industries: A Dartboard Approach,” Journal of Political Economy 105, 889-927. 

Feldman, M.P., 1994. The Geography of Innovation. Kluwer Academic Publishers: 
Dordrecht, the Netherlands. 

Feldman, M.P., and D.B. Audretsch, 1999. “Innovation in Cities: Science-Based 
Diversity, Specialization and Localized Competition,” European Economic Review 
43, 409-429. 

Feldman, M.P., and R. Florida, 1994. “The Geographic Sources of Innovation: 
Technological Infrastructure and Product Innovation in the United States,” Annals of 
the Association of American Geographers 84, 210-229. 

Fingleton, B., 2001. “Theoretical Economic Geography and Spatial Econometrics: 
Dynamic Perspectives,” Journal of Economic Geography 1, 201-225. 

Florax, R., and H. Folmer, 1992. “Specification and Estimation of Spatial Linear 
Regression Models: Monte Carlo Evaluation of Pre-Test Estimators,” Regional 
Science and Urban Economics 22, 405-432.  

Glaeser, E.L., H.D. Kallal, J.A. Scheinkman, and A. Shleifer, 1992. “Growth in Cities,” 
Journal of Political Economy 100, 1126-1152. 

Glaeser, E.L., J.A. Scheinkman, and A. Shleifer, 1995. “Economic Growth in a Cross-
Section of Cities,” Journal of Monetary Economics 36, 117-143. 

Griliches, Z., 1990. “Patent Statistics as Economic Indicators: A Survey,” Journal of 
Economic Literature 28, 1661-1707. 

Grossman, G.M., and E. Helpman, 1991. Innovation and Growth in the Global Economy. 
MIT Press: Cambridge, MA. 

Hansen, N., 2001. “Knowledge Workers, Communication, and Spatial Diffusion,” in B. 
Johansson, C. Karlsson, and R.R. Stough (eds.), Theories of Endogenous Regional 
Growth: Lessons for Regional Policies. Springer-Verlag: Berlin: Germany. 

Haynes, K.E., and A.S. Fotheringham, 1984. Gravity and Spatial Interaction Models. 
Sage Publications: Beverly Hills, CA. 

Hecker, D., 1999. “High-Technology Employment: A Broader View,” Monthly Labor 
Review June, 18-28. 

Henderson, V., A. Kuncoro, and M. Turner, 1995. “Industrial Development in Cities,” 
Journal of Political Economy 103, 1067-1090. 

Hirschman, A.O., 1958. The Strategy of Economic Development. Yale University Press: 
New Haven, CT. 



Lim: Geography of Innovative Activity   35

Isard, W., 1956. Location and Space-Economy: A General Theory Relating to Industrial 
Location, Market Areas, Land Use, Trade, and Urban Structure. Technology Press of 
MIT: Cambridge, MA. 

Isard, W., 1998. “Gravity and Spatial Interaction Models,” in W. Isard, I.J. Azis, M.P. 
Drennan, R.E. Miller, S. Saltzman, and E. Thorbecke (eds.), Methods of 
Interregional and Regional Analysis. Ashgate: Aldershot, UK. 

Jacobs, J., 1969. The Economy of Cities. Random House: New York, NY. 
Jaffe, A.B., 1989. “Real Effects of Academic Research,” American Economic Review 79, 

957-970. 
Jaffe, A.B., M. Trajtenberg, and R. Henderson, 1993. “Geographic Localization of 

Knowledge Spillovers as Evidenced by Patent Citations,” Quarterly Journal of 
Economics 63, 577-598. 

Kaldor, N., 1970. “The Case for Regional Policies,” Scottish Journal of Political 
Economy 17, 337-348. 

Kelejian, H.H., and I.R. Prucha, 1998. “A Generalized Spatial Two-Stage Least Squares 
Procedure for Estimating a Spatial Autoregressive Model with Autoregressive 
Disturbances,” Journal of Real Estate Finance and Economics 17, 99-121. 

_____, 1999. “A Generalized Moments Estimator for the Autoregressive Parameter in a 
Spatial Model,” International Economic Review 40, 509-533. 

Kelejian, H.H., and D.P. Robinson, 1993. “A Suggested Method of Estimation for Spatial 
Interdependent Models with Autocorrelated Errors, and an Application to a County 
Expenditure Model,” Papers in Regional Science 72, 297-312. 

Krugman, P., 1991a. Geography and Trade. MIT Press: Cambridge, MA. 
_____, 1991b. “Increasing Returns and Economic Growth,” Journal of Political 

Economy 99, 483-499. 
Lucas, R.E. Jr., 1988. “On the Mechanics of Economic Development,” Journal of 

Monetary Economics 22, 3-42. 
Lundvall, B-Å., 1988. “Innovation as an Interactive Process: From User-Producer 

Interaction to the National System of Innovation,” in G. Dosi, C. Freeman, R. Nelson, 
G. Silverberg, and L. Soete (eds.), Technical Change and Economic Theory. Pinter: 
London, UK. 

Malecki, E.J., 1983. “Technology and Regional Development: A Survey,” International 
Regional Science Review 8, 89-125. 

Marshall, A., 1920. Principles of Economics. 8th ed. Macmillan: London, UK. 
Martin, R., and P. Sunley, 1996. “Paul Krugman’s Geographical Economics and its 

Implications for Regional Development Theory: A Critical Assessment,” Economic 
Geography 74, 201-227.   

Myrdal, G., 1957. Economic Theory and Underdeveloped Regions. Harper & Row: 
London, UK.  

Nelson, R.R., 1993. “Technical Innovation and National Systems,” in R.R. Nelson (ed.), 
National Innovation Systems: A Comparative Analysis. Oxford University Press: 
Oxford, UK. 

Nelson, R.R., and S.G. Winter, 1982. An Evolutionary Theory of Economic Change. 
Belknap Press of Harvard University Press: Cambridge, MA. 



The Review of Regional Studies, Vol. 34, No. 1, 2004, pp. 11 − 36  
  

36

Partridge, M.D., and D.S. Rickman, 1999. “Static and Dynamic Externalities, Industry 
Composition, and State Labor Productivity: A Panel Study of States,” Southern 
Economic Journal 66, 319-335. 

Porter, M., 1990. The Competitive Advantage of Nations. Free Press: New York, NY. 
Rauch, J.E., 1993. “Productivity Gains from Geographic Concentration of Human 

Capital: Evidence from the Cities,” Journal of Urban Economics 34, 380-400. 
Regional Research Institute, 1990. 1990 Comprehensive Employment Data. West 

Virginia University: Morgantown, WV. 
_____, 1986. “Increasing Returns and Long-Run Growth,” Journal of Political Economy 

94, 1002-1037. 
Romer, P.M., 1990. “Endogenous Technological Change,” Journal of Political Economy 

98, S71-S102. 
Sen, A., and T.E. Smith, 1995. Gravity Models of Spatial Interaction Behavior. Springer-

Verlag: New York, NY. 
Simon, C.J., 1998. “Human Capital and Metropolitan Employment Growth,” Journal of 

Urban Economics 43, 223-243. 
Simon, C.J., and C. Nardinelli, 2002. “Human Capital and the Rise of American Cities, 

1900-1990,” Regional Science and Urban Economics 32, 59-96. 
Solow, R.M., 1956. “A Contribution to the Theory of Economic Growth,” Quarterly 

Journal of Economics 70, 65-94. 
U.S. Patent and Trademark Office, United States Patent Grants by State, County, and 

Metropolitan Area (1990-1999). Available at: http://www.uspto.gov/web-
/offices/ac/ido/oeip/taf/county.pdf. 

Varga, A., 1998. University Research and Regional Innovation: A Spatial Econometric 
Analysis of Academic Technology Transfers. Kluwer Academic Publishers: Boston, 
MA. 

_____, 2000. “Local Academic Knowledge Transfers and the Concentration of Economic 
Activity,” Journal of Regional Science 40, 289-309. 

Worgan, A., and S. Nunn, 2002. “Exploring a Complicated Labyrinth: Some Tips on 
Using Patent Data to Measure Urban and Regional Innovation,” Economic 
Development Quarterly 16, 229-236. 


