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Abstract 

The measurement of efficiency and productivity growth at the regional level requires the 
researcher to select among several choices for capital estimation and methodology.  We look at 
two capital estimation techniques, by Munnell and by Garofalo and Yamarik, and two 
methodologies, data envelopment analysis and stochastic frontier estimation.  The measurement of 
efficiency does not appear to be very sensitive to the choice of capital or technique.  However, the 
measurement of productivity is sensitive to the choice of an estimation technique for a given 
measure of capital.    
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1.  MEASURING EFFICIENCY AND PRODUCTIVITY GROWTH  
 

In his 1994 survey article of regional productivity growth, Shelby Gerking lamented 
that the “. . . regional sources-of-growth literature is rather frustrating to read . . . 
because of the wide variation in reported total factor productivity growth estimates and 
the apparent differences in data applied” (Gerking 1994, p. 180).  He goes on to ask: 
“How much do alternative estimates of the regional capital stock in manufacturing have 
on resulting total factor productivity estimates?” (Gerking 1994, p. 181).  Researchers use 
different measures of capital due to the fact that the Bureau of Economic Analysis 
(BEA), the main source for regional and other data, does not publish estimates of capital 
stock at the regional level.  Domazlicky and Weber (2003) tried to answer the question as 
it relates to the measurement of capital by considering five alternative estimation 
methods.  They found considerable differences in state total factor productivity estimates, 
given the measure of capital that was employed.   

 
Researchers have been interested in the measurement of productivity growth and 

efficiency at the regional level for several decades.  Early studies, for example Hulten and 
Schwab (1984), concentrated on the measurement of regional productivity growth.  Later 
studies branched into the measurement of efficiency (Williams and Moomaw 1989), the 
role of state infrastructure in augmenting productivity growth in manufacturing (Morrison 
and Schwartz 1996), explaining the differentials in regional productivity growth (Mullen 
and Williams 1990), accounting for air pollution in the measurement of productivity 
growth in state manufacturing (Färe, Grosskopf, and Pasurka 2001), and measuring 
regional economic convergence (Garofalo and Yamarik 2002).  For all of these studies, 
the particular capital measure employed and the methodology that was chosen are 
important decisions that the researchers must make. 

 
 While the studies that Gerking reviewed primarily employed a sources-of-growth 
approach (see, for example, Hulten and Schwab 1984) to measure total factor productiv-
ity (TFP), more recent researchers (see, for example, Domazlicky and Weber 1997 and 
Weber and Domazlicky 1999) used data envelopment analysis (DEA) or a stochastic 
frontier approach to estimate TFP productivity growth rates.   
 

Similar to TFP growth, regional technical efficiency can be estimated using alterna-
tive measures of capital as well as alternative methods, notably through estimating a 
stochastic production frontier or using DEA.  Note that annual estimates of regional tech-
nical efficiency using DEA or a stochastic frontier approach are employed in constructing 
estimates of TFP growth.  

 
 A regional researcher who attempts to measure regional technical efficiency and/or 
TFP growth is now faced with a somewhat bewildering array of choices as to the method 
to employ as well as the capital measure to use.  The perpetual inventory method to 
measure capital stock employed by Hulten and Schwab (1984), for example, may be the 
preferred approach; however, gaps in data availability in 1979-1981 make it impossible 
to use this approach after that period.  Aaberg (1973) offers another approach to 
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measuring capital using value-added and firm payroll.  His approach is rarely employed 
today.  In this paper, we consider two different measures of capital stock as developed by 
Munnell (1990) and by Garofalo and Yamarik (2002).  Munnell’s approach is the most 
frequently used by researchers today, while the approach of Garofalo and Yamarik has 
some attractive features (see below) that make it a viable alternative to that of Munnell.  
In addition, we consider two methods of measuring efficiency and TFP growth:  stochas-
tic frontier and DEA.  A researcher considering the measurement of capital and the 
methods of estimation that are employed in this paper will have a choice of four possible 
approaches for estimating efficiency or TFP growth.  Given that the true measure of 
capital is unknown and that the actual levels of efficiency and TFP growth are also 
unknown, it may be impossible to say which are best; but it may be possible to learn how 
sensitive estimates are to the choice of estimation methodology or of a capital measure 
and therefore give some indication of the robustness of productivity growth and 
efficiency estimates. 
 
 The next section is a very brief discussion of the alternative approaches to measuring 
capital and the different methods for measuring productivity and efficiency in the manu-
facturing sector.  In the third section, we outline the results from using the different 
measures and methods.  In the last section, we offer some very tentative conclusions and 
suggestions for researchers in this area. 
 
2.  METHODS, MEASUREMENTS, AND DATA 
 
2.1  Data 
 
 Since the BEA provides no estimates of regional capital stocks, researchers are 
forced to develop their own estimates.  As mentioned above, because there are gaps in the 
data on investment in capital at the regional level, the perpetual inventory method used 
by Hulten and Schwab (1984) is unavailable for the period after 1981.  A further 
complication is the switch to the North American Industrial Classification System 
(NAICS) starting in 1997, which means that data on manufacturing after 1996 are not 
compatible with data from earlier periods.  The regional researcher must resort to using 
an allocation technique whereby the national capital stock total for the manufacturing 
sector is allocated among the 50 states using some reasonable method.   
 
 Munnell developed a very simple technique using the five-year Census of 
Manufacturing.  Her method is to allocate total manufacturing capital to a state according 
to it’s proportion of national depreciable assets as reported in the Census.  Munnell uses 
states’ proportions of assets from a given census for two years before and two years after 
the census to allocate the national capital stock to states.  The effect of this centered 
approach is that a state’s stock of manufacturing capital grows at the national rate for five 
years.  The one possible drawback of this approach is the discontinuity that exists when 
the next census is used to allocate national capital totals.  This discontinuity can lead to 
large jumps in the capital estimates, which could skew efficiency and TFP growth esti-
mates, particularly for states that experience declines in capital from one census to the 
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next.  Several researchers have used her data (Färe, Grosskopf, and Pasurka 2001; Holtz-
Eakin 1994; Domazlicky and Weber 1997; and Morrison and Schwartz 1996). 
 
 Garofalo and Yamarik (2002, hereafter GY) use a capital allocation technique based 
on regional personal income.  Capital in the manufacturing sector is allocated according 
to a state’s proportion of personal income in the sector at the national level.  This method 
is simple to implement and has the further advantage that data are available for long 
periods of time.  Its basic assumption is that state personal income in manufacturing 
should be related to the amount of capital stock employed in a state.  See Domazlicky and 
Weber (2003) for a more detailed explanation of the two approaches to capital estimation.   
 
 The two measures of capital and two approaches will be used to estimate total factor 
productivity growth and efficiency.  The regions of interest are the 50 states for the 
period 1982-1996.  Extension of the estimates beyond 1996 is not possible due to the 
change from SIC to NAICS starting with the 1997 Census of Manufactures.  The measure 
of output is Gross State Product (GSP) in manufacturing from the BEA Website.  Manu-
facturing output is measured in millions of chained 1996 dollars.  The second input is 
labor.  The measure of labor is millions of person hours and is taken from the Annual 
Survey of Manufactures (Bureau of the Census).  Non-production personnel are assumed 
to work 40 hours per week for 50 weeks of the year, which are then added to the hours of 
production workers to get total person hours.  The capital estimates are calculated as 
indicated above and are in millions of chained 1996 dollars.  Descriptive statistics for the 
variables included in the models are given in Table 1. 
 
2.2  Measurement of Technical Efficiency and Total Factor Productivity 

 Measurement of efficiency draws on the work of Farrell (1957).  Technical efficiency 
is the ability to produce maximal output with a given level of inputs.  That is, technical 
efficiency is measured as a distance from the production frontier.  We illustrate this idea 
in the simple case of one output (y) and one input (x).  Figure 1 shows a decreasing 
returns to scale production frontier in panel (a) and a constant returns to scale production 
frontier in panel (b).  The input-output combinations for two states are illustrated:  state 1, 

 

TABLE 1 

Descriptive Statistics 
Variable Description Mean Std. Dev. Min. Max. 

Y Real State GDP in manufacturing 
 (millions of chained 1996 dollars) 21,425.7 23,241.6 386.8 134,669.0 

L Hours worked in manufacturing 
 (millions of hours) 745.5 794.2 14.1 4,243.0 

K Capital Stock (millions of chained 
 1996 dollars)     

 Munnell methodology 27,135.5 28,275.3 989.9 136,886.0 
 GY methodology 27,113.3 31,099.8 464.9 168,657.6 

number of observations 750    
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FIGURE 1 

Input-Oriented and Output-Oriented Measures of Technical  
Efficiency and Returns to Scale 
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which is represented by point a, and state 2, which is represented by point z.  State 2 has 
an input-output combination that lies on the frontier.  Therefore, state 2 is obtaining 
maximal output from its given input, i.e., the state is technically efficient.  Technical 
efficiency for state 2 is equal to 1.   
 
 On the other hand, state 1’s input-output combination is inside the frontier, so state 1 
is technically inefficient.  The amount of technical efficiency can be calculated in either 
an input orientation or an output orientation.  From an input orientation, technical effi-
ciency is measured as bd/ba, the ratio of minimum potential input to actual or observed 
input, which is an amount between 0 and 1.  The closer the value is to 1, the less 
inefficiency.  1 – bd/ba = da/ba is the proportion by which the state could reduce its 
inputs and still produce the same output.   
 
 From an output orientation, technical efficiency is measured as ca/ce, the ratio of 
actual or observed output to maximum potential output, which takes on values between 0 
and 1.  The closer the value is to 1, the less inefficiency.  Thus, ca/ce - 1 = ea/ce is the 
proportion by which output could be expanded, given the inputs. 
 
 Note that only in panel (b), under constant returns to scale, the measure of technical 
efficiency with an input orientation is equal to the reciprocal of technical efficiency with 
an output orientation, so that da/ba = ea/ce. 
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 How performance has changed over time is measured by total factor productivity 
(TFP) growth.  TFP describes the growth in output that is not explained by the growth in 
inputs.  That is, TFP growth is 
 

(1)  tt

tt
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x/y 11

growthTFP
++

= ,  

which is the ratio of average products in the two time periods.  When there is more than 
one output or more than one input, an index number is needed to aggregate the outputs 
and/or inputs.  For example, one could use a Fisher’s Ideal index, a Tornquist index, or a 
Malmquist index.  We use the Malmquist productivity index developed by Caves, 
Christensen, and Diewert (1982). 
 
 In the one output-one input case, suppose that (xt,yt) is observed in year t and 
(xt+1, yt+1) is observed in year t+1.  These observed input-output combinations along with 
two production frontiers, f t(x) in period t and f t+1(x) in period t+1, are illustrated in 
Figure 2.  Productivity growth could be measured relative to the production frontier from 
either period, f t(x) in period t or f t+1(x) in period t+1.  From an input orientation, using 
the production frontier f t(x) in period t, TFP growth is  
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Similarly, using the production frontier f t+1(x) in period t+1, TFP growth is  
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Färe, Grosskopf, and Roos (1998) define the input-oriented Malmquist TFP index as the 
geometric mean of (2) and (3),  
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 The first expression in parenthesis on the right side of (4) measures the change in 
technical efficiency between periods t and t+1:  0c/0e is the technical efficiency of obser-
vation (xt+1,yt+1) relative to the production frontier for period t+1, and 0b/0d is the techni-
cal efficiency of observation (xt,yt) relative to the production frontier for period t. 
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FIGURE 2 

Input-Oriented Measurement of TFP Growth 
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 The second term on the right side of (4) measures the geometric mean of technical 
change, the shift in the production frontier between periods t and t+1.  0f/0c is the hori-
zontal shift of the production frontier at yt+1, while 0a/0b is the horizontal shift in the 
production frontier at yt.  That is, the Malmquist TFP index is 
 
(5) Malmquist TFP growth = ∆ technical efficiency · geometric mean of technical 

change, where ∆ is the change. 
 
 Both the measures of technical efficiency and Malmquist TFP growth require estima-
tion of production frontiers.  Two principal methods of estimating frontier functions are 
DEA and stochastic frontiers.  The two methods differ in how the production frontier is 
estimated.  DEA uses linear programming methods and the latter uses econometric 
methods to estimate the frontier. 
 
 The Malmquist index of TFP growth in (4) and (5) equals the notion of TFP growth 
in (1) only under constant returns to scale.  (See Färe, Grosskopf, and Roos 1998, p. 137, 
for details.)  Therefore, in our empirical work, we have imposed constant returns to scale 
on the production frontiers estimated for measuring both technical efficiency and 
Malmquist TFP growth indices using both DEA and stochastic frontiers. 
 
2.1.1  Data Envelopment Analysis 

 DEA is one method used in this paper to estimate state efficiency in manufacturing 
and TFP growth.  Let x be a vector of the two inputs capital (K) and labor (L). 
 

x = (K,L) 



The Review of Regional Studies, Vol. 35, No. 2, 2005, pp. 117-138 124 
 
Similarly, there is one output, y, which is GSP in manufacturing.  In addition, there are 
i = 1,…, 50 states.  For each state then, there are two inputs and one output for each year 
of the sample period.  Time subscripts are omitted for ease of explanation. 
 

Constant returns to scale are assumed along with strong disposability of inputs.  The 
latter assumption means that output is non-decreasing in inputs.  DEA uses linear pro-
gramming to construct the production frontier using the observations on capital, labor, 
and output for the 50 states.  States that are located on the frontier are said to be efficient 
(their efficiency level is equal to 1), while states that are inside the frontier are inefficient.  
Inefficient states use more inputs than are necessary to produce their output.  The effi-
ciency levels of states that are not on the production frontier will be less than 1.  Such 
states could produce the same output level with fewer resources.  For example, a state 
with an efficiency level of 0.70 could produce the same output level using 30 percent 
fewer resources.  The extent of the inefficiency can be measured by the efficiency score, 
λ, which is the ratio of minimum feasible input usage to the actual level of input usage for 
a given output level.   

 
For state i’, the Farrell input-oriented measure of technical efficiency (FI) under 

constant returns to scale (C) and strong disposability of inputs (S) is calculated as the 
solution to the linear programming problem: 
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where the zi are intensity variables.  The linear programming problem is solved for each 
state for each year of the sample period.   
 

The technical efficiency measures are used to calculate Malmquist TFP indices for 
the states.  Färe, Grosskopf, and Lovell (1994) show that the input-oriented Malmquist 
index of TFP growth can be calculated using Farrell technical efficiency measures as: 
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where FI 
t+1(yt+1, xt+1) is the Farrell input-oriented measure of technical efficiency using 

the production frontier for period t + 1 and the input-output vector for period t + 1, and 
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1+t
IF  (yt, xt) is the Farrell input-oriented measure of technical efficiency using the produc-

tion frontier for period t + 1 and the input-output vector for period t, and so on. 
 
 As in (5), the first ratio on the right side of (7) measures the change in technical 
efficiency between the two periods.  The second set of ratios (in brackets) is technical 
change measured by the geometric mean of the shifts in the frontier from periods t to 
t + 1.  Hence, the Malmquist TFP index from periods t to t + 1 is the product of the 
change in technical efficiency and the geometric mean of technical change.  Equations (6) 
and (7) are estimated for each state using the software OnFront, version 2. 
 
2.1.2  Stochastic Production Frontier 

 Alternatively, we investigate state efficiency and productivity in manufacturing by 
estimating a stochastic production frontier panel data model.  See, for example, 
Kumbhakar and Lovell (2000) or Coelli, Rao, and Battesse (1999).  We assume the 
production frontier can be written in translog form: 
 

(8) 
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where , distributed iid N itv ( )2σ,0 v , is the random noise component and  is the non-
negative technical efficiency component. 

itu

 
 Note that t is included as one of the regressors to capture the effects of technical 
change.  Technical change is given by t/Yln ∂∂ . 
 
 We allow technical efficiency to be time-varying by specifying the technical 
efficiency component as a non-linear function of time.  Specifically, we assume  
 
(9)    ( ){ })η(exp Ttuu iit −−=

where  is distributed iid Niu + ( )2σμ, u  .  That is, is a non-negative random variable from 
a truncated normal distribution (Battese and Coelli 1992).  The parameter η is to be 
estimated.  This specification allows technical efficiency to vary across states via the s.  
Technical efficiency varies across time via 

iu

iu
( ){ })η(exp Tt −− , which is the same for each 

state. 
 
 As noted earlier, Malmquist productivity indices are best estimated under constant 
returns to scale (Färe, Grosskopf, and Roos 1998; Coelli, Rao, and Battese 1999).  
Constant returns to scale implies the following parametric restrictions: 
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βK + βL = 1 

βKK + βKL = 0 

βLL + βKL = 0. 
 

These restrictions are imposed by normalizing output and the labor input by the capital 
input.  In addition, we mean-differenced the output, capital, and labor variables so that 
the output elasticities, calculated at the sample means, are represented by the first order 
terms.  That is, the equation we estimate may be written as: 
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 t is a time trend, and and  are as defined above.   itv itu

 The results are used to compute measures of efficiency change, technical change, and 
Malmquist total factor productivity indices.  Technical efficiency for state i in year t, TEit, 
is computed as the conditional mean (see Coelli, Rao, and Battese 1999, for 
computational details): 
 
(11)  ( ).uvuETE itititit −−= )(exp   

That is, in the stochastic production frontier model, the deviation of an observation from 
the frontier consists of two parts:  random error (vit) and technical efficiency (–uit).  We 
observe (vit - uit) but need to estimate –uit, the technical efficiency component.  The 
maximum likelihood estimates of the parameters in (10) and estimates of (11) are 
obtained using the software FRONTIER Version 4.1 (Coelli 1996). 
 
 Technical efficiency change for state i from period t to period t + 1 is given by 
 
(12)  .TE/TE t,it,it,t,i 11efficiencytechnical ++ =Δ   

 Technical change for the ith state from period t to period t + 1 can be calculated from 
the estimated parameters.  The partial derivatives of the production function with respect 
to time periods t and t + 1 are evaluated at and , respectively.  Following 
Coelli, Rao, and Battese (1999), technical change is calculated as the geometric mean of 
the partial derivatives: 

itlln 1ln +itl
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The Malmquist TFP index between period t and t + 1 is then constructed as: 
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3.  EMPIRICAL RESULTS 

 Parameter estimates from the constant returns to scale translog stochastic production 
frontier in equation (10) are contained in Table 2.  The output, capital, and labor variables 
are in logs and are normalized by the means of each respective variable.  In addition, we 
divide output and labor by capital.  Therefore, there are five independent variables in the 
translog production function:  normalized labor, normalized labor squared, the cross 
product of normalized labor and time, time, and time squared.  For the GY capital meas-
ure, all parameter estimates have the expected signs and all but βLt are statistically differ-
ent from zero at the 5 percent level.  The coefficient on the time trend variable, βt , 
suggests there is positive technological progress.  However, the effect is non-linear since 
the coefficient on the square of time is negative.  For the Munnell capital measure, all 
parameter estimates have the expected signs and all coefficients except βLL and βLt are 
significant at the 5 percent level, casting some doubt on the translog functional form.  
The parameters βt and βtt suggest positive but non-linear technical progress. 
 

TABLE 2 

Stochastic Production Frontier Parameter Estimates 
 Munnell Capital Measure GY Capital Measure

Coefficient Estimate t-ratio Estimate t-ratio 
 β0 0.2051 5.2688 0.2384 5.7673 
 βL 0.8481 18.0813 0.4524 4.0768 
βt 0.0265 5.3303 0.0236 4.4903 

   βLL -0.0152 -0.4282 -0.8608 -2.9765 
  βLt 0.0029 0.9261 -0.0136 -1.4258 
 βtt -0.0006 -2.398 -0.0009 -3.2380 
σ2 0.0328 7.3798 0.0265 6.3280 
γ 0.6102 17.7256 0.5788 14.0130 
μ 0.2832 7.4226 0.2478 5.6490 
η 0.0243 3.0026 0.0313 3.0614 

log likelihood 479.160  511.802  
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 As noted earlier, the output elasticity with respect to labor is given by βL, which 
represents labor’s share of income.  We calculated labor’s share of income in manufac-
turing using the regional gross state product tables from the United States Department of 
Commerce Bureau of Economic Analysis as compensation of employees in 
manufacturing divided by nominal gross state product in manufacturing.  For the period 
1982-1996, labor’s share of income in manufacturing averaged 0.682.  We tested the null 
hypothesis that βL = 0.682 in Table 2 for both the Munnell and GY capital measures.  
This hypothesis could not be rejected for the Munnell capital measure (t-statistic = 
0.354);  however,  it  was  rejected  for  the  GY  capital  measure  (t-statistic  = -2.068).  
We did not expect to be able to reject the null hypothesis for either capital measure. 
 
 We tested a number of additional hypotheses about the stochastic production function 
using likelihood ratio tests.  Results are shown in Table 3.  The first hypothesis is that the 
production technology could be represented by a constant returns to scale Cobb-Douglas 
production function (H0:  βLL = βLt = 0).  This hypothesis is rejected for the GY capital 
measure, indicating that the constant returns translog is preferred.  However, for the 
Munnell capital measure, this hypothesis is not rejected.  Therefore, the Munnell data 
could be represented by a Cobb-Douglas production function; nevertheless, it was 
decided to use the translog functional form for the Munnell approach.  Use of the Cobb-
Douglas production function implies that technical change is identical across states.  
While we might expect that technical innovation would spread quickly across states, it 
did not seem likely that technical change would be identical across states.  The translog 
function is more flexible and does not impose this restriction. 
 

TABLE 3 
Hypothesis Tests 

Null Hypothesis Log Likelihood X2 statistic X2critical 
Munnell capital measure    
(1)  βLL = βLt = 0 477.94 2.44 2

9502 .,Χ   5.99 
(2)  βt = βtt = βLt = 0 468.09 22.14 2

9503 .,Χ  7.81 
(3)  γ = μ = 0 291.66 375.24 *

.,
2

9503Χ   7.05 
(4)  μ = 0 465.47 27.38 2

9501 .,Χ   3.84 
(5)  η = 0 473.81 10.70 2

9501 .,Χ   3.84 
GY capital measure    
(1)  βLL = βLt = 0 501.69 20.22 2

9502 .,Χ   5.99 
(2)  βt = βtt = βLt = 0 509.76 4.08 2

9503 .,Χ  7.81 
(3)  γ = μ = 0 327.83 367.95 *

.,
2

9503Χ   7.05 
(4)  μ = 0 499.74 24.13 2

9501 .,Χ   3.84 
(5)  η = 0 504.08 15.44 2

9501 .,Χ   3.84 
*mixed X2 critical value is from Kodde and Palm (1986, p. 1246) 
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Second, we tested the hypothesis that there was no technical change over the 15-year 
time period (H0:  βt = βtt = βLt = 0).  This hypothesis could not be rejected for the GY 
measure, but it was rejected for the Munnell measure.  We would have expected some 
technical change over the period using both measures of capital.  Nevertheless, the 
estimates of technical change using the GY and Munnell measures were very similar.  
We found that (the geometric mean of) the technical change component of the Malmquist 
TFP growth for the stochastic frontier approach from (13) was 2.2 percent per year for 
the Munnell measure and 1.7 percent per year for the GY measure.   
 

The third hypothesis is that there is no technical inefficiency.  This is a joint test of 
two parameters in the distribution of the technical efficiency error component.  The 
parameter γ is the ratio of the error variance of technical efficiency to the total error vari-
ance due to technical efficiency and random error, i.e., .  If γ = 0 and 
μ = 0, then there is no truncated normal error component.  That is, there is no technical 
inefficiency.  This hypothesis is strongly rejected in both cases.   

)( 222
vuu / σ+σσ=γ

 
The fourth hypothesis is that the distribution of ui is better represented by a half-

normal distribution (H0:  μ = 0).  We reject this hypothesis, indicating that ui is from a 
truncated normal distribution.  Finally, we tested whether technical inefficiency is time-
invariant (H0: η = 0).  This hypothesis is also rejected in both cases.  Technical ineffi-
ciency varies over time.  Since our estimate of η is positive, technical efficiency is 
improving over time. 

 
3.1 State Efficiency Measurement 

 The average estimates of state efficiency in manufacturing are presented in Table 4.  
The average estimates shown for each state were calculated as the geometric mean of the 
state’s annual efficiency measures.  For the DEA approach, a state’s average technical 
efficiency over the years in the sample was calculated as the geometric mean of the esti-
mated λs from (6).  For the stochastic frontier approach, the state’s average technical effi-
ciency was the geometric mean of the estimates from (11).  The adjacent columns show 
the state’s rank using each efficiency measure.  The first two columns of estimates use 
the Munnell measure of capital, while the last two columns use the GY measure of capi-
tal.  In each pair of columns, the first contains efficiency estimates derived from the 
stochastic production frontier model, while the latter contains efficiency estimates 
derived from the DEA model.   
 
 While there is a difference in the magnitude of these estimates, the estimates are 
strongly correlated.  To determine how close the rankings of states are among the various 
capital measures and models, we calculated Spearman rank-order correlation coefficients, 
which is a non-parametric measure of correlation.  A value of 1 indicates perfect correla-
tion, while a value of 0 indicates no correlation.  We also calculated Pearson’s correlation 
coefficients, which assume that estimates come from normal distributions.  For example, 
in the last two columns in Table 5 based on the GY  capital  measure, efficiency estimates  
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TABLE 4 

State Efficiency in Manufacturing 
  Munnell Capital Measure  GY Capital Measure

State Stochastic Rank DEA Rank Stochastic Rank DEA Rank 
AL 0.605 44 0.505 46 0.697 30 0.590 30 
AK 0.887 4 0.771 10 0.914 4 0.775 4 
AZ 0.628 41 0.628 31 0.598 49 0.505 49 
AR 0.607 43 0.560 44 0.739 15 0.629 14 
CA 0.691 23 0.704 15 0.635 44 0.541 43 
CO 0.688 26 0.639 25 0.666 38 0.558 38 
CT 0.700 20 0.793 9 0.625 45 0.539 45 
DE 0.982 1 0.853 1 0.919 3 0.798 2 
FL 0.645 37 0.658 23 0.649 41 0.540 44 
GA 0.657 34 0.604 36 0.764 9 0.650 9 
HI 0.747 13 0.630 29 0.762 10 0.645 11 
ID 0.657 35 0.568 43 0.671 37 0.564 37 
IL 0.660 33 0.606 35 0.642 42 0.542 42 
IN 0.688 25 0.581 42 0.683 35 0.575 33 
IA 0.728 15 0.624 33 0.743 14 0.625 16 
KS 0.690 24 0.638 26 0.733 17 0.615 20 
KY 0.910 3 0.770 11 0.934 2 0.785 3 
LA 0.944 2 0.843 2 0.984 1 0.879 1 
ME 0.576 46 0.485 47 0.660 39 0.554 39 
MD 0.678 30 0.594 39 0.684 33 0.576 32 
MA 0.681 28 0.796 8 0.618 46 0.526 46 
MI 0.827 5 0.717 14 0.747 13 0.649 10 
MN 0.735 14 0.761 12 0.684 32 0.574 34 
MS 0.570 48 0.511 45 0.734 16 0.623 17 
MO 0.782 7 0.804 6 0.758 11 0.640 12 
MT 0.701 19 0.595 38 0.754 12 0.629 13 
NE 0.648 36 0.700 16 0.718 21 0.612 22 
NV 0.693 21 0.688 18 0.730 19 0.610 23 
NH 0.640 39 0.729 13 0.599 48 0.509 48 
NJ 0.763 12 0.803 7 0.699 29 0.601 26 

NM 0.677 31 0.600 37 0.704 26 0.623 18 
NY 0.801 6 0.840 3 0.731 18 0.628 15 
NC 0.685 27 0.681 19 0.808 7 0.687 7 
ND 0.564 50 0.469 50 0.691 31 0.587 31 
OH 0.766 10 0.678 20 0.717 22 0.614 21 
OK 0.728 16 0.623 34 0.706 25 0.606 25 
OR 0.719 18 0.637 27 0.709 24 0.598 27 
PA 0.665 32 0.629 30 0.639 43 0.544 41 
RI 0.587 45 0.828 5 0.609 47 0.512 47 
SC 0.570 47 0.482 48 0.671 36 0.573 35 
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  Munnell Capital Measure  GY Capital Measure
State Stochastic Rank DEA Rank Stochastic Rank DEA Rank 
SD 0.619 42 0.831 4 0.711 23 0.606 24 
TN 0.641 38 0.592 40 0.703 27 0.595 28 
TX 0.681 29 0.585 41 0.701 28 0.591 29 
UT 0.629 40 0.627 32 0.658 40 0.553 40 
VT 0.566 49 0.478 49 0.585 50 0.485 50 
VA 0.779 8 0.689 17 0.821 6 0.689 6 
WA 0.765 11 0.645 24 0.725 20 0.615 19 
WV 0.774 9 0.670 22 0.785 8 0.664 8 
WI 0.692 22 0.675 21 0.684 34 0.570 36 
WY 0.723 17 0.632 28 0.875 5 0.748 5 
mean 0.695  0.653  0.715  0.606  

 
 

TABLE 5 

Correlation of State Efficiency Measures 
 Munnell GY Munnell v. GY Munnell v. GY
Test statistic Stochastic v. DEA Stochastic v. DEA Stochastic DEA 
Pearson correlation 

coefficient 0.650 0.994 0.763 0.354 

     
Spearman rank order 

correlation 0.616 0.992 0.621 0.234 

 
 
from the stochastic frontier and DEA have a Pearson correlation coefficient of 0.994 and 
a Spearman rank order correlation of 0.992.  For the Munnell measure, the Pearson corre-
lation coefficient is 0.650 and the Spearman’s is 0.616, both highly statistically signifi-
cant.   
 
 These results suggest that while there is some question about the precise value of 
technical inefficiency, the two models do equally well in identifying the most and least 
efficient states in the manufacturing sector.  If we keep the estimation technique constant 
and vary the capital measure, the results are a bit more mixed.  If the stochastic approach 
is used, the measure of capital that is employed, Munnell or GY, gives very similar 
results, as evidenced by the Pearson coefficient (0.763) or by Spearman’s (0.621).  
However, if DEA is the estimation method, the correlations are much weaker, though still 
significant at the 5 percent level for Pearson coefficient (0.354) and at the 10 percent 
level for the Spearman’s (0.234).   
 

In summary, if the measurement of efficiency is the main goal of the researcher, the 
final results are not very dependent on the choice of the capital measure or the estimation 
method.  The relative efficiency measures will be similar regardless of which of the four 
possibilities is chosen. 
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3.2  Total Factor Productivity Measurement 

 The Malmquist total factor productivity (TFP) indices are given in Table 6.  For each 
state, these TFP indices are the geometric means of the annual Malmquist TFP growth for 
the period 1982-1996 from (7) for the DEA approach and from (14) for the stochastic 
frontier approach.  There are four estimates for each state.  Just looking at the first state, 
Alabama, one can see considerable variation in the TFP growth rates.  The high for 
Alabama is 3.37 percent per year, using the Munnell capital measure and the stochastic 
frontier approach.  The low estimate is 1.61 percent per year, using the GY measure of 
capital and DEA.  More importantly, the rank for the state also varies considerably (from 
12 to 35).  A perusal of Table 6 indicates that this variation is not atypical.  However, the 
simple means for the four possible measures of TFP change are not that different, as they 
vary from 2.61 percent to 3.07 percent.   
 
 The correlations in Table 7 present further evidence of the rather mixed performance 
of the four possible measures of Malmquist TFP indices.  For the Munnell capital meas-
ure, the correlations between the stochastic approach and DEA are very low and insig-
nificant (0.087 and 0.147).  For the GY measure of capital, the correlations are low, 
though significant at the 5 percent level.  If the estimation method is held constant, the 
results are a little better.  For the stochastic frontier approach, the Pearson coefficient is 
0.415, while the Spearman’s is 0.273, both significant at the 5 percent level.  If DEA is 
the estimation method, the coefficients are higher (0.832 and 0.597) and significant at the 
1 percent level.  The evidence indicates that in measuring TFP growth, for a given 
method of estimation, the choice of the capital measure will yield similar results, but for a 
given capital measure, the choice of an estimation method can lead to very different 
results. 
 
 One of the most pronounced differences in Malmquist TFP indices and state rank 
occurs in New Mexico.  According to the Malmquist TFP indices from the stochastic 
frontier models, New Mexico’s average annual productivity growth (3.13 and 2.71 
percent per year) is approximately the same as the average state’s growth over the period 
(3.07 and 2.73 percent per year).  However, under the DEA model, New Mexico’s aver-
age annual productivity growth (12.92 and 11.86 percent per year) is well above the 
average state’s productivity growth (2.77 and 2.61 percent per year). 
 
 Because we found that the efficiency scores are highly correlated, we focus on meas-
ures of technical change to see why the stochastic frontier and DEA models yield such 
different results.  Figure 3 shows the year-to-year change in technology in the state of 
New Mexico using each capital measure and estimation method.  Time period 1 is 
1982/1983; time period 2 is 1983/1984, and so on.  We note that the two technical change 
measures from (13) under the stochastic frontier model are very close to each other and 
are very stable from year to year.  In contrast, the two technical change measures from 
the second term on the right side of (7) under the DEA model are quite volatile from year 
to year.  This is especially true for periods 11 (1992/1993) through 14 (1995/1996). 
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 It is well known that the DEA model is very sensitive to extreme observations.  
Therefore, to see whether extreme observations might be influencing the DEA estimates, 
we look at a scatter plot of the output-capital ratio (Y/K) and the labor-capital ratio (L/K).  
(See Simar, 2003, for a method of detecting extreme values in data sets with multiple- 
outputs and multiple-inputs.)  Figures 4 and 5 contain these scatter plots for the Munnell 
and GY capital measures, respectively.  In each figure, we observe extreme data points.  
These four extreme data points with the highest levels of Y/K (of about 1.5 and higher) 
using the lowest values of L/K (of about 27 to 30) are input-output observations on the 
state of New Mexico.  New Mexico is a relatively small state with a manufacturing sector 
dominated by one large firm, Intel (it accounts for about 75 percent of all manufacturing 
output in the state).  Intel’s output soared in the early 1990s following a capital expan-
sion.  The combination of a very high-valued output and low labor requirements resulted 
in the extreme values for New Mexico in Figures 4 and 5.  The presence of these extreme 
data points may be the cause of the unstable results in the DEA model.  Thus, we suggest 
that the researcher examine the data for extreme values or outliers prior to choosing the 
estimation model. 
 

TABLE 6 

State Total Factor Productivity in Manufacturing 
  Munnell Capital Measure  GY Capital Measure
State Stochastic Rank DEA Rank Stochastic Rank DEA Rank 
AL 1.0337 12 1.0243 25 1.0261 30 1.0161 35 
AK 1.0221 48 1.0107 43 1.0223 45 1.0062 48 
AZ 1.0338 11 1.0646 2 1.0339 3 1.0578 2 
AR 1.0344 8 1.0184 33 1.0229 42 1.0158 37 
CA 1.0315 23 1.0164 35 1.0328 6 1.0326 15 
CO 1.0313 27 1.0348 15 1.0303 10 1.0239 26 
CT 1.0316 22 1.0007 50 1.0338 4 1.0355 9 
DE 1.0219 49 1.0161 36 1.0247 40 1.0173 33 
FL 1.0333 14 1.0197 31 1.0300 12 1.0119 43 
GA 1.0324 16 1.0152 37 1.0225 43 1.0133 41 
HI 1.0283 40 1.0243 26 1.0260 31 1.0142 39 
ID 1.0320 20 1.0466 4 1.0292 17 1.0415 5 
IL 1.0323 18 1.0299 20 1.0313 8 1.0264 22 
IN 1.0304 30 1.0339 17 1.0297 15 1.0321 17 
IA 1.0294 36 1.0336 18 1.0259 32 1.0338 12 
KS 1.0312 29 1.0047 46 1.0252 37 1.0065 46 
KY 1.0236 47 1.0241 29 1.0187 49 1.0201 29 
LA 1.0199 50 1.0394 10 1.0184 50 1.0363 8 
ME 1.0346 7 1.0293 21 1.0282 25 1.0116 44 
MD 1.0313 24 1.0138 38 1.0288 20 1.0154 38 
MA 1.0324 17 1.0096 44 1.0335 5 1.0325 16 
MI 1.0264 46 1.0242 28 1.0300 11 1.0188 31 
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  Munnell Capital Measure  GY Capital Measure
State Stochastic Rank DEA Rank Stochastic Rank DEA Rank 
MN 1.0300 31 1.0131 42 1.0299 13 1.0189 30 
MS 1.0359 2 1.0202 30 1.0224 44 1.0221 28 
MO 1.0284 38 1.0171 34 1.0257 33 1.0237 27 
MT 1.0296 34 1.0193 32 1.0250 38 1.0171 34 
NE 1.0333 13 1.0331 19 1.0248 39 1.0161 36 
NV 1.0313 26 1.0382 11 1.0254 34 1.0064 47 
NH 1.0338 10 1.0461 5 1.0339 2 1.0541 3 
NJ 1.0292 37 1.0134 40 1.0298 14 1.0342 11 
NM 1.0313 28 1.1292 1 1.0271 27 1.1186 1 
NY 1.0279 42 1.0015 49 1.0284 24 1.0273 20 
NC 1.0317 21 1.0137 39 1.0204 47 1.0080 45 
ND 1.0354 3 1.0280 24 1.0254 35 1.0253 24 
OH 1.0284 39 1.0288 23 1.0291 18 1.0306 18 
OK 1.0295 35 1.0426 9 1.0289 19 1.0413 6 
OR 1.0299 32 1.0604 3 1.0280 26 1.0523 4 
PA 1.0322 19 1.0350 14 1.0318 7 1.0350 10 
RI 1.0368 1 1.0029 48 1.0305 9 1.0125 42 
SC 1.0354 4 1.0437 7 1.0269 28 1.0274 19 
SD 1.0353 5 1.0343 16 1.0240 41 1.0174 32 
TN 1.0330 15 1.0132 41 1.0261 29 1.0141 40 
TX 1.0299 33 1.0376 12 1.0287 21 1.0326 14 
UT 1.0338 9 1.0438 6 1.0287 22 1.0270 21 
VT 1.0351 6 1.0288 22 1.0339 1 1.0244 25 
VA 1.0280 41 1.0079 45 1.0219 46 1.0050 50 
WA 1.0278 43 1.0034 47 1.0292 16 1.0052 49 
WV 1.0268 44 1.0358 13 1.0254 36 1.0365 7 
WI 1.0313 25 1.0242 27 1.0287 23 1.0261 23 
WY 1.0264 45 1.0430 8 1.0194 48 1.0333 13 
mean 1.0307  1.0277  1.0273  1.0261  

 
 

TABLE 7 

Correlation of State TFP Measures 
 Munnell GY Munnell v. GY Munnell v. GY
Test statistic Stochastic v. DEA Stochastic v. DEA Stochastic DEA 
Pearson correlation 
coefficient 0.087 0.285 0.415 0.832 

     
Spearman rank order 
correlation 0.147 0.370 0.273 0.597 
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FIGURE 3 

New Mexico - DEA v. Stochastic 
(GY Capital Measure – Square v. Diamond; 
Munnell Capital Measure – Triangle v. Star) 
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FIGURE 4 

1982-1996 Data (Munnell Capital Measure) 
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FIGURE 5 

1982-1996 Data (GY Capital Measure) 
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4.  SUMMARY AND CONCLUSIONS 
 

In this paper, we consider two different measures of capital stock as developed by 
Munnell (1990) and by Garofalo and Yamarik (2002).  In addition, we consider two 
methods of measuring efficiency and TFP growth:  the stochastic frontier and DEA 
models.  A researcher considering the measurement of capital and the methods of estima-
tion that are employed in this paper will have a choice of four possible approaches for 
estimating efficiency or TFP growth.  Given that the true measure of capital is unknown 
and that the actual levels of efficiency and TFP growth are also unknown, is it possible to 
say anything about which capital measures or estimation methods are the best to use?   

 
 Based on state-level data for the period 1982-1996, we found that while there is a 
difference in the magnitude of the technical efficiency estimates from the four 
approaches, the estimates are strongly correlated.  For example, based on the GY capital 
measure, the efficiency estimates from the stochastic frontier and DEA have a Pearson 
correlation coefficient of 0.994 and a Spearman rank order correlation of 0.992.  For the 
Munnell measure, the Pearson correlation coefficient is 0.650 and the Spearman’s is 
0.616, both highly statistically significant.   
 
 So, if the measurement of efficiency is the main goal of the researcher, the estimates 
of technical efficiency are not very sensitive to the choice of the capital measure or the 
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estimation method.  The relative efficiency measures are similar regardless of which of 
the four possibilities is chosen. 
 
 Our results indicate a rather mixed performance of the four possible measures of TFP 
growth.  The measures of TFP growth are significantly correlated when using the same 
model but different measures of capital.  For the stochastic frontier approach, the Pearson 
coefficient between the measures of TFP growth based on the Munnell and GY measures 
of capital is 0.415, while the Spearman’s is 0.273, both significant at the 5 percent level.  
If DEA is the estimation method, the correlation coefficients are even higher (0.832 and 
0.597) and significant at the 1 percent level.  However, different estimation methods can 
lead to very different results when using a particular measure of capital.  For the Munnell 
capital measure, the correlations of the measures of TFP growth between the stochastic 
approach and DEA models are very low and insignificant (0.087 and 0.147).  For the GY 
measure of capital, the correlations are low, though significant at the 5 percent level. 
 

We investigated why the stochastic frontier and DEA models yielded such different 
results for TFP growth.  The main reason appeared to be unstable DEA estimates of tech-
nical change.  After examining the data, we concluded that the presence of extreme data 
points may be the cause of the unstable results in the DEA model.  Thus, we suggest that 
the researcher examine the data for extreme values or outliers prior to choosing the 
estimation model.  Clearly, the choice of the sample will influence the results. 
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