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Abstract 

Numerous studies have pointed to the econometric problems introduced by heterogeneity in cross-
sectional data samples used to explore convergence suggested by neo-classical growth models. We 
introduce a local concept of convergence along with a Bayesian locally linear spatial estimation 
method to address these problems. The method allows global and local β-convergence to be 
viewed in a continuous fashion. Inference regarding global convergence can be treated as a mix-
ture distribution arising from local β-convergence estimates from each region in the sample. 
Taking this approach eliminates the need to specify sub-samples and regimes as well as parameter 
variation schemes that have been used to model heterogeneity. We illustrate the method using a 
sample of 138 European regions.  

Keywords: Locally linear estimation; Robust; Outliers; Heteroscedastic  

JEL classification: C11; R11; R12  



Ertur/Le Gallo/LeSage:  Local Versus Global Convergence in Europe 83 
 
1.   INTRODUCTION 
 

Since the pioneering contribution of Baumol (1986) and the more formal contribu-
tions of Barro and Sala-I-Martin (1991, 1992, 1995) and Mankiw, Romer, and Weil 
(1992), numerous studies have examined the β-convergence hypothesis based on the neo-
classical growth model (Solow 1956) using cross-sectional samples of countries and 
regions.  

 
The prediction of the neoclassical growth model (Solow 1956) is that the growth rate 

of an economy is positively related to the distance that separates it from its own steady 
state. Making the simplistic assumption that economies are structurally similar, charac-
terized by the same steady state and differing only in their initial conditions, we should 
see unconditional convergence to the same steady state. In this case, low-income econo-
mies grow faster than those with high incomes and eventually catch up in the long run. 
Under the more realistic scenario, where economies have different steady states that are 
conditional on identifiable structural differences, it is possible to draw econometric infer-
ences regarding conditional convergence. This requires that we appropriately condition 
on structural differences that give rise to differences in steady states. In empirical 
practice, it is difficult to measure and model structural differences; and in theory, hetero-
genous structures suggest heterogeneity in steady states as well as the structural factors 
on which we need to condition our econometric models (Durlauf 2000, 2001; Brock and 
Durlauf 2001).  

 
While the β-convergence hypothesis has been heavily criticized both on theoretical 

and methodological grounds (Mankiw 1995; Temple 1999; Islam 2003), we focus in this 
paper on two interrelated issues: parameter heterogeneity and spatial interdependence in 
conditional convergence models estimated on cross-sectional samples.  

 
First, heterogeneity in the structure of economies suggests that conditioning attempts 

that rely on smoothly varying variables to describe economic structure might fail to 
achieve the appropriate conditioning needed to produce valid inferences regarding condi-
tional β-convergence. A theoretical motivation for heterogeneity can be found in endoge-
nous growth theory (Azariadis and Drazen 1990) as well as the neoclassical model with 
heterogeneous structure (Galor 1996). Econometric methods that attempt to directly 
accommodate heterogeneity offer an alternative approach to the problem of estimation 
and inference. Partitioning the cross-sectional sample into regimes based on income 
levels or other structural characteristics is one approach to modeling heterogeneity, the 
so-called convergence clubs approach (Desdoigts 1999; Durlauf and Johnson 1995). 
Allowing for explicit parameter variation over the sample represents another (Durlauf, 
Kourtellos, and Minkin 2001). In both cases, model specification issues arise beyond 
those involving which explanatory variables to include in the model. For the case of a 
multiple regime model, decisions must be made regarding how to partition the cross-
sectional sample; for varying parameter models, a specification for this variation must be 
set forth.  
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Second, the uneven geographical distribution of economic activities and growth is 
one of the most striking characteristics of contemporary economies. Indeed, as pointed 
out by Easterly and Levine (2001), there is a tendency for all factors of production to 
gather together, leading to a geographic concentration of economic activities. As a 
consequence, any empirical study on growth and convergence should explicitly 
acknowledge this phenomenon of spatial interdependence between regions or countries.  

 
In this paper, we develop an empirical methodology that deals with both of these 

issues through a Bayesian spatial autoregressive locally linear estimation approach. On 
the one hand, regarding heterogeneity, our locally linear spatial model partitions the 
cross-sectional sample observations by treating each location along with surrounding 
locations as a sub-sample. This reduces the need to make arbitrary decisions regarding 
how to partition the sample observations but allows for variation in the parameter esti-
mates across all observations. On the other hand, our proposed method presumes that 
similarities in legal and social institutions as well as culture and language might act to 
create spatially local uniformity in economic structures, leading to similar spatial locality 
in rates of convergence. We think it useful to define the concept of local convergence, 
which we use to refer to a situation where rates of convergence in economic growth rates 
are similar for observations located at nearby points in space. In other words, there exists 
spatial clustering in the magnitudes of the β-convergence parameter estimates. It should 
be noted that our locally linear spatial estimation method does not impose a priori similar 
rates of convergence for spatially neighboring observations. Rather, we estimate β-
convergence parameters for each region/observation in the sample and then examine 
these estimates in an effort to assess whether there is empirical support for our concept of 
local convergence. This represents an important difference between our approach and a 
spatially varying parameter estimation scheme that imposes spatial similarity on the esti-
mates. For an example of the latter approach, see LeSage (2004). Furthermore, Bayesian 
techniques produce robust estimates with regard to potential outliers and heteroscedastic-
ity of unknown form.  

 
The framework that we suggest in this paper therefore allows modeling spatial auto-

correlation and heterogeneity of the convergence process. Both heterogeneity in steady 
states and heterogeneity in the rate of convergence towards this steady state are allowed. 
Note that the former is usually captured by dynamic panel data models with fixed effects 
(Islam 1995). However, panel data raises potential problems related to possible small 
sample bias and short time frequency (Islam 2003). Our approach is then useful when 
panel data is not appropriate.  

 
The paper is organized as follows. Section 2 describes global versus local spatial 

autoregressive estimation. Bayesian Markov Chain Monte Carlo (MCMC) estimation of 
the model is taken up in Section 3 with details provided in an appendix. The model is 
applied to a sample of 138 European regions in Section 4.  

 



Ertur/Le Gallo/LeSage:  Local Versus Global Convergence in Europe 85 
 
2.  ESTIMATION AND INFERENCE REGARDING CONVERGENCE  

A spatial autoregressive β-convergence model that can be used to produce global 
regression estimates in the presence of spatial dependence in a cross-section of observa-
tions representing regions or countries is described in Section 2.1. Section 2.2 extends 
this model to allow for a sequence of locally linear parameter estimates associated with 
each observation (country or region) in the data sample.  

 
2.1 Global Spatial Autoregressive Estimates 
 

Formally, β-convergence models rely on a cross-section of countries or regions, using 
the average growth rate of per capita GDP (y) over a given time period as the dependent 
variable. These models rely on an explanatory variables matrix, X = [ι y0]  consisting of a 
constant (ι) as well as the initial level of log per capita GDP (y0) and the associated 
parameter vector γ = [α β]′ as shown in (1):  

 
 y = Xγ + ε 
(1) 
 ε ~ ( )nI,N 20 εσ . 
 

Most often, least-squares estimation is used to determine the sign and significance of 
the parameter β for the case of unconditional β-convergence. For conditional β-
convergence, a matrix of explanatory variables that purport to measure and control for 
structural differences is introduced in (1). Typical variables suggested by Mankiw, 
Romer, and Weil (1992) in an augmented Solow growth model were: human and physical 
capital, saving rates, and population growth rates. Additional variables to control for 
structural differences might include: the ratio of public consumption to GDP, the ratio of 
domestic investment to GDP, terms of trade, the fertility rate, etc. (see Barro and Sala-I-
Martin 1995). In fact, more than 90 of such variables have been included in cross-country 
regressions using international data sets in the empirical growth literature as surveyed by 
Durlauf and Quah (1999).  

 
The problems linked to the omission of the spatial dimension of cross-sectional data 

have recently been highlighted. Indeed, in most cross-country studies, economies are 
treated as “isolated islands” (Mankiw 1995; Quah 1996), whereas they are often charac-
terized by spatial autocorrelation. Spatial autocorrelation refers to the coincidence of 
attribute similarity and locational similarity (Anselin 1988). In the context of European 
regions, for example, positive spatial autocorrelation indicates that wealthier regions tend 
to be geographically clustered as well as poorer regions. It may arise from the fact that 
the data are affected by processes touching different locations. Theoretical models from 
economic geography point to factors such as technology diffusion, factor mobility, and 
trade, which all have a strong geographic dimension that might interact with growth 
processes (Kubo 1995; Martin and Ottaviano 1999). Spatial autocorrelation can also arise 
from model misspecifications (omitted variables, measurement errors) or from a variety 
of measurement problems, as boundary mismatching between the administrative 
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boundaries used to organize the data and the actual boundaries of the economic processes 
believed to generate convergence. In the regional science literature, numerous studies 
have explicitly taken into account spatial autocorrelation in convergence analysis (see 
Abreu, de Groot, and Florax 2005 and Rey and Janikas 2005 for reviews).  

 
To accommodate spatial dependence in the growth rates of regions or countries 

reflected in the cross-sectional dependent variable y, estimates might be produced using 
the spatial autoregressive model (SAR) shown in (2). This model includes what is known 
as a spatial lag of the dependent variable (see Anselin 1988):  

 
  (2) y = ρWy + Xγ + ε.                                                                                                      
 
This model conventionally assumes that ε ~ ( )nI,N 20 σ , but we will have more to say 
about this later. The vector y, matrix X, and parameter vector γ are as described for the 
model in (1).  
 

The n × n matrix W is a row-standardized spatial weight matrix. While a number of 
ways exist to specify W, a common specification sets Wij > 0 for observations j = 1 … n 
sufficiently close (as measured by some metric) to observation i. For example, we might 
rely on observations that are spatially contiguous to observation i, those that have borders 
in common, or we might use the five nearest neighbors measured by distance from the 
centroids of each location. By construction, the main diagonal of W is set to zero to pre-
clude an observation from directly predicting itself. Row-standardization of the matrix W 
scales each element in the matrix so that the rows sum to unity, producing an explanatory 
variable Wy that reflects the average of growth rates from neighboring observations. The 
scalar parameter ρ measures the influence of the variable Wy on y.  

 
This particular functional form can be motivated theoretically: Ertur and Koch 

(2005); Lopez-Bazo, Vayá, and Artís (2004); and Vayá et al. (2004) have recently 
derived neoclassical models with spatial externalities and technological interdependence 
yielding to convergence models including spatial autocorrelation. The spatial lag struc-
ture plays the role of a lagged dependent variable in time-series models, accounting for 
variation in the dependent variable arising from latent or unobservable variables. In the 
case of our spatial lag, these latent factors are correlated among cross-sectional observa-
tions located nearby in geographic space. Indeed, many empirical studies have found 
evidence of spatial autocorrelation in the residuals of traditional models (Moreno and 
Trehan 1997; Fingleton 1999; Conley and Ligon 2002; Le Gallo, Ertur, and Baumont 
2003). The spatial lag highlights a spatial spillover effect, where the growth rate in each 
region is affected by those of neighboring regions after conditioning on initial per capita 
GDP levels.  

 
This model can be estimated using maximum likelihood methods (see Anselin 1988) 

assuming that there is a homogeneous relationship between y and X across the spatial 
sample of observations. The estimated scalar parameter ρ̂  could be used to test for the 
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presence of significant spatial dependence in the sample of cross-sectional growth rates. 
If this parameter is not significantly different from zero, the model in (2) collapses to the 
simple least-squares model in (1). The scalar parameter estimate β̂  contained in the 
parameter vector γ is used to produce an inference regarding convergence that we label 
global convergence. Inferences based on this parameter represent a conclusion regarding 
convergence or non-convergence that averages over sample data evidence from the entire 
sample of countries or regions.  

 
As an illustration, we provide estimates for the model in (1) based on least-squares 

alongside maximum likelihood estimates for the SAR model in (2) in Table 1. These 
estimates were based on a sample of growth rates in log per capita GDP for 138 European 
regions over the period from 1980 to 1995 (see Section 1 for a detailed description of the 
sample data). The SAR model used a spatial weight matrix W based on the ten nearest 
neighbors to each region in the sample. Results based on spatial weight matrices formed 
using eight to 12 nearest neighbors to each region were similar to those reported in the 
table. From the homoscedastic model estimates reported in the table, we see strong 
evidence of spatial dependence as indicated by the estimate of ρ = 0.75, that is significant 
at the 99 percent confidence level. The table also illustrates a difference between the 
magnitude of the least-squares β and that from the SAR model, pointing to differing rates 
of convergence. The least-squares estimate suggests more rapid convergence than that 
from the spatial model.  

 
Another issue that plagues growth regressions is non-constant variance across the 

sample of countries or regions. Table 1 also presents estimates for the least-squares and 
SAR model based on a Bayesian heteroscedastic linear model proposed by Geweke 
(1993) and a spatial autoregressive variant of this model suggested by LeSage (1997). 
These models allow the disturbances to take the form ε ~ ( ), 20 σ VN , where V is a 
diagonal matrix containing variance scalars v1, v2, …, vn, estimated using Markov Chain 
Monte Carlo (MCMC) methods.  

 
Specifics regarding the prior assigned to the vi terms are given in the appendix, but 

we note here that the role of the vi terms is to accommodate outliers or observations con-
taining large variances by down-weighting these observations. Note that in cross-country 
literature, the presence of outliers, affecting the estimation of β-convergence models, 
have been pointed out by DeLong and Summers (1991) and Temple (1998, 1999). In the 
context of spatial modeling, outliers or aberrant observations arise due to “enclave 
effects,” where a particular region exhibits divergent behavior from nearby areas. 
Geweke (1993) shows that this approach to modeling the disturbances is equivalent to a 
model that assumes a Student–t distribution for the errors. We note that this type of dis-
tribution has frequently been used to deal with sample data containing outliers, (e.g., 
Lange, Little, and Taylor 1989). The heteroscedastic estimates reported in Table 1 are 
based Markov Chain Monte Carlo (MCMC) estimation described in the appendix.  
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TABLE 1 

Least-Squares Versus Spatial Model Estimates 
Homoscedastic Model Estimates   

Variable OLS
OLS t-Marginal 

Probability SAR
SAR t-Marginal 

Probability
Constant  0.1294 0.0000  0.0580  0.0009   

1980 log-level  -0.0078 0.0000  -0.0048  0.0033   
Spatial lag, Wy   0.7502  0.0000   

Bayesian Heteroscedastic Model Estimates   

Variable OLS
95% HPD 

Upper-Lower SAR
95% HPD 

Upper-Lower
Constant  0.1225 0.0933 — 0.1513 0.0474  0.0256 — 0.0726   

1980 log-level  -0.0065 -0.1042 — -0.0038 -0.0390  -0.0637 — -0.0146   
Spatial lag, Wy   0.7676  0.6230 — 0.8750   

 
 

These robust estimates suggest lower values for the convergence parameter β in both 
the least-squares and SAR models. It should be noted that a 95 percent highest posterior 
density (HPD) interval is reported for the Bayesian estimates. These point to a β estimate 
for the heteroscedastic SAR model that is significantly different from zero based on the 
95 percent HPD intervals.  

 
To summarize this discussion, inferences regarding convergence based on what we 

choose to label global estimates that presume homogeneity in the relationship across the 
sample of regions or countries are likely to be sensitive to outliers and to influences such 
as spatial dependence that have the potential to bias least-squares estimates. For this 
reason, we propose a locally linear spatial autoregressive model described in the next 
section. This model is capable of producing inferences regarding our concept of local 
convergence.  

 
2.2 Locally Linear Spatial Autoregressive Estimates 
 

McMillen (1996) and McMillen and McDonald (1997) introduced a form of spatial 
non-parametric locally linear weighted regression (LWR) that Brunsdon, Fotheringham, 
and Charlton (1996) term geographically weighted regressions (GWR). This approach to 
modeling spatial dependence relies on separate models estimated using a sub-sample of 
the data based on observations nearby each observation. The motivation for this approach 
is that if spatial dependence arises due to inadequately modeled spatial heterogeneity, 
LWR can potentially eliminate this problem. These models often rely on the estimated 
parameters to detect systematic variation in the relationship being examined over space. 
Pace and LeSage (2004) point out that LWR methods exhibit a trade-off between 
increasing the sample size to produce less volatile estimates that contain increasing 
spatial dependence. Selecting a smaller sample size reduces the spatial dependence but at 
the cost of increased parameter variability that impedes detection of systematic patterns 
of parameter variation over space. Therefore, they establish the spatial autoregressive 

 



Ertur/Le Gallo/LeSage:  Local Versus Global Convergence in Europe 89 
 
local estimation (SALE) method and argue that the SALE method eliminates this 
problem by extending the LWR approach to include a spatial lag of the dependent 
variable, which accommodates spatial autocorrelation likely to arise as the sub-sample 
size is increased. In addition, inclusion of the spatial autoregressive term in the model 
results in improved prediction and stability of the parameter estimates, decreasing the 
sensitivity of performance to the bandwidth that is typically observed.  

 
Formally, to accommodate both spatial dependence and heterogeneity, we produce 

estimates using n–models, where n represents the number of cross-sectional sample 
observations, using the locally linear spatial autoregressive model in (3):  

 
(3) U ( i )y  =  ρ i U ( i )Wy  +  U ( i )Xγ i  +  U ( i )ε                 
 
where U(i) represent an n × n diagonal matrix containing distance-based weights for 
observation i that assign weights of one to the m nearest neighbors to observation i and 
weights of zero to all other observations. This results in the product U ( i )y  representing 
an m × 1 sub-sample of observed GDP growth rates associated with the m observations 
nearest in location (using Euclidean distance) to observation i.  
 

Similarly, the product U ( i )X  extracts a sub-sample of explanatory variable informa-
tion based on m nearest neighbors. We note that as m → n, U ( i )  → In, so that expanding 
the sub-sample size m around each locality results in a limiting model where the sub-
sample size expands to include all observations in the cross-sectional sample. In other 
words, these estimates approach the global estimates based on all n observations that 
would arise from the SAR model in (2). This produces locally linear econometric esti-
mates that vary systematically as the sub-sample size increases towards the global esti-
mates one would achieve using the entire sample. It allows a systematic assessment of the 
mapping between the locally linear estimates that accommodate heterogeneity in steady 
states and convergence speeds and estimates based on the global sample reflecting homo-
geneity (absolute β-convergence model). This allows us to assess empirical evidence in 
support of local convergence in light of the more traditional global convergence 
approach.  

 
The SALE model assumes εi ~ ( )ni IiU,N )(0 2σ , but we will have more to say about 

this later. On the other hand, the scalar parameter ρi measures the influence of the 
variable U ( i )Wy  on U ( i )y . Note that there is a cost associated with introducing the 
spatial lag since the SALE model requires maximum likelihood methods, whereas the 
LWR model relies on least-squares. However, Pace and LeSage (2004) present an effi-
cient recursive approach for maximum likelihood estimation of the n spatial autoregres-
sive models for problems involving large numbers of observations and illustrate the 
method for a sample of 3,107 U.S. counties. Most cross-sectional samples of countries or 
regions used in the empirical convergence literature involve considerably smaller 
samples.  
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We extend the SALE model to accommodate non-constant variances by introducing 
εi ~ ( )ViUN i )(,0 2σ , V = diag (v1, v2, …, vn). We label this model BSALE, Bayesian 
spatial autoregressive local estimation. The specifics of this extension are described in 
Section 3 with MCMC estimation details provided in the appendix.  

 
The smaller samples used for estimation give rise to another problem with local esti-

mation methods, pointed out by LeSage (2004). Indeed, aberrant observations or outliers 
arising from spatial enclave effects or shifts in regime can exert a large impact on the 
locally linear estimates. Since these sub-sample estimates may be based on a small 
number of observations and the sample data observations are re-used when estimates are 
produced for each point in space, a single outlier can contaminate estimates covering 
large areas or sub-regions of the spatial sample. This may create an artifact that resembles 
a regime shift or spatial clustering pattern in the estimates for β (or in β as well as the 
parameters on control variables in the conditional β-convergence model). Intuitively, a 
single outlier will reappear in sub-samples constructed using neighboring locations 
needed to produce estimates for each point in the spatial sample. This allows a single 
outlier to produce a contagion effect that can impact estimates for an entire region of the 
sample.  

 
In the next section, we set forth the BSALE model that can accommodate outliers by 

down-weighting these observations.  
 

3.  BAYESIAN SPATIAL AUTOREGRESSIVE LOCAL ESTIMATION 
 

For each spatial autoregressive model based on a sub-sample of size m, we specify 
our model as shown in (4), where the n × n diagonal matrix U ( i )  assigns a weight of 
unity to the m nearest neighbors to observation i, and zero weight to all other 
observations.  
   

 (4) 
( ) ),,(diag,)(0)U(

)()()()(

21
2

nv,vvVViU,N~i

iUXiUWyiUyiU

…=σε

ε+γ+ρ=
 

  
The m × m matrix W represents a spatial weight matrix with row-sums normalized to 
unity. This locally linear Bayesian variant of the basic spatial autoregressive model 
shown in (4) introduces a set of variance scalars (v1, v2, …, vn), that represent unknown 
parameters that need to be estimated. This allows us to assume ( )ViUN~ )(,0 2σε , 
where V = diag(v1, v2, …, vn), but we note that only m of the variance scalars vi take on 
non-zero values. As noted, this approach to robust modeling in the face of non-constant 
variance or outliers was introduced by Geweke (1993) for a least-squares model and 
LeSage (1997) for the spatial autoregressive model. Details concerning MCMC estima-
tion of this model can be found in the appendix. This Bayesian model relies on a diffuse 
prior for the parameters α and β, a relatively uninformative Gamma prior for the noise 
variance, and a uniform prior for ρ over the interval -1 to 1.  
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The other aspect of our Bayesian SALE model is selection or setting of the sub-
sample size m. As already noted, variation in this will create a host of parameter out-
comes that are: highly volatile over the spatial sample for small values of m and nearly 
constant taking on values near the global estimates as m → n. This issue typically arises 
with locally linear non-parametric estimation methods, and cross-validation methods are 
often used to select an optimal sub-sample size. A plausible range for sub-sample size 
consideration might be (¼)n < m < (¾)n, so that sub-sample sizes are at least ¼ the 
number of observations but less than ¾ of the entire sample. Of course, these ranges 
could be changed depending on the size of the sample data. A related problem is that 
inference regarding the parameters is conditional on the sub-sample size selected.  

 
One advantage of the SALE method is that a mapping of the parameter estimates is 

provided that allows an examination of the sensitivity of inferences with regard to choice 
of sub-sample size. We can examine the sequence of estimates for sub-sample sizes 
ranging from m = (¼)n to m = (¾)m in an effort to see whether inferences would differ as 
the sub-sample size varies. This is the approach we take here. A cross-validation 
approach in this setting might involve use of the estimates for observation i based on a 
sub-sample size m to predict “fringe observations,” those that border the sub-sample of m 
observations. This would represent a spatial analogue to one-step-ahead predictions in 
time-series. A Bayesian solution to the problem of sub-sample size selection would be to 
mix over estimates based on alternative sub-sample sizes to produce posterior estimates 
that reflect uncertainty with regard to the choice of sub-sample size. Unfortunately, this 
requires determination of weights that would be used in mixing over the estimates from 
alternative sub-sample sizes. These weights should be based on posterior probabilities 
associated with models arising from the various sub-sample sizes; but this would require 
integration over sub-sample sizes, which would be treated as a parameter in the model. 
This would lead to computationally expensive calculations. We demonstrate that infer-
ence regarding convergence versus non-convergence is not sensitive to sub-sample sizes 
ranging from 40 to 100 observations, which roughly corresponds to (¼)n and(¾)n.  

 
The parameters γ, V, and σ and the sub-sample size m in the heteroscedastic SAR 

model can be estimated by drawing sequentially from the conditional distributions of 
these parameters, a process known as “alternating conditional sampling,” or Markov 
Chain Monte Carlo (MCMC) sampling. To illustrate how this works, let θ = (θ1, θ2) 
represent a parameter vector and p(θ) denote the prior, with ( )WXyL ,,θ  denoting the 
likelihood. This results in a posterior distribution ( ) ( ) ( )WXyLpcDp ,,θθ⋅=θ , with 
c a normalizing constant. Consider the case where ( )Dp θ  is difficult to work with, but a 
partition of the parameters into two sets θ1, θ2 is easier to handle. Given an initial estimate 
for θ1, which we label , suppose we could easily estimate θ1θ̂ 2 conditional on θ1 

using ( )12 , θθ ˆDp . Denote the estimate , derived by using the posterior mean or 

mode of 

2θ̂

( )12 , θθ ˆDp . Assume further that we are now able to easily construct a new 
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estimate of θ1 based on the conditional distribution ( )21 , θθ ˆDp . This new estimate for 

θ1 can be used to construct another value for θ2, and so on. On each pass through the 
sequence of sampling from the two conditional distributions for θ1, θ2, we collect the 
parameter draws that are used to construct a joint posterior distribution for the parameters 
in our model. Gelfand and Smith (1990) demonstrate that sampling from the sequence of 
complete conditional distributions for all parameters in the model produces a set of esti-
mates that converge in the limit to the true (joint) posterior distribution of the parameters. 
That is, despite the use of conditional distributions in our sampling scheme, a large 
sample of the draws can be used to produce valid posterior inferences regarding the joint 
posterior mean and moments of the parameters.  

 
To implement this estimation method, we need to determine the conditional distribu-

tions for each parameter in our BSALE model. These are developed in the appendix that 
also describes the MCMC sampling scheme.  

 
4.  CONVERGENCE OF EUROPEAN REGIONS 
 

We illustrate the BSALE method using a sample of 138 European regions and data 
covering the period 1980 to 1995. These local estimation results and inferences regarding 
convergence are compared to the global estimates and inferences presented in 
Section 4.1.  

 
4.1 The Sample Data 
 

Data limitations remain a serious problem in the European regional context. Harmo-
nized and reliable data allowing consistent regional comparisons are scarce, in particular 
for the beginning of the time period under study. There is clearly a lack of appropriate or 
easily accessible data that could be used to measure and control for structural differences 
considered by conditional β-convergence models. This represents a departure from the 
cross-country studies of Barro and Sala-I-Martin (1995) or Mankiw, Romer, and Weil 
(1992), which rely on an extensive international data set.  

 
We use the log of European regional per capita GDP over the period 1980-1995 

expressed in ECUs, the former European Currency Unit, replaced by the Euro in 1999. 
The data are extracted from the EUROSTAT-REGIO database, which is widely used in 
empirical studies of European regions.  [See for example López-Bazo et al. (1999), 
Neven and Gouyette (1995), and Quah (1996) among others.] Our sample includes 138 
regions in 11 European countries over the 1980-1995 period: Belgium (BE:11), Denmark 
(DK:1), France (FR:21), Germany (DE:30), Greece (GR:13), Luxembourg (LU:1), Italy 
(IT:20), the Netherlands (NL:9), Portugal (PT:5), and Spain (ES:16) in NUTS2 level and 
the United Kingdom (UK:11) in NUTS1 level. (See the data appendix for more details.) 
NUTS is the French acronym for Nomenclature of Territorial Units for Statistics used by 
Eurostat. In this nomenclature, NUTS1 refers to European Community Regions and 
NUTS2 to Basic Administrative Units. NUTS1 is used for the United Kingdom because 
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there is no official counterpart to NUTS2 units, which are drawn up only for the Euro-
pean Commission use as groups of counties. This explains data non-availability at the 
NUTS2 level throughout the period for this country. Luxembourg and Denmark may be 
considered NUTS2 regions according to Eurostat. Our choice to prefer NUTS2 level is 
mainly driven by policy considerations. Since reform in 1989, NUTS2 is the level at 
which eligibility for Objective 1 Structural Funds is determined. (See The European 
Regions: Sixth Periodic Report on the Socio-Economic Situation in the Regions of the 
European Union, European Commission, 1999.)  

 
It is worth mentioning that our sample is far more consistent and encompasses more 

regions than the one initially used by Barro and Sala-I-Martin (1991, 73 regions; 1995, 90 
regions) and Sala-I-Martin (1996a, 73 regions; 1996b, 90 regions) where different 
sources and different regional breakdowns were mixed. Moreover, the smaller 73 region 
data set is largely confined to prosperous European regions belonging to Western 
Germany, France, United Kingdom, Belgium, Denmark, Netherlands, and Italy, exclud-
ing Spanish, Portuguese, and Greek regions, which are less prosperous. This may result 
in a selection bias problem raised by DeLong (1988). Armstrong (1995) attempted to 
overcome these problems by expanding the original Barro and Sala-I-Martin (1991) 73-
region data set to less prosperous southern regions using a more consistent sample of 85 
regions. The time period 1980-1995 for our sample results from a need to control for 
monetary changes that do not allow for consistent measures of income across countries in 
more recent periods. 

 
4.2 Estimation Results 
 

Throughout the empirical application, the weight matrix used is constructed using the 
six nearest neighbors to each region in the sample. Estimation results based on a first-
order contiguity weighting matrix were also examined. The number of neighbors ranged 
from a low of just three first-order contiguous neighbors up to 10 contiguous neighbors 
with an average around six neighbors. Estimates from the model based on a first-order 
contiguity weighting matrix were nearly identical to those reported here based on the six 
nearest neighbors. We note that using 10 nearest neighbors in the formulation of W places 
a constraint on the smallest local sample size that can plausibly be used during 
estimation. It seems advisable to assign non-zero weights using the matrix U(i) in (4) for 
at least 20 or 30 observations to provide an adequate amount of sample data on which to 
base estimates of ρ, β, V, and σ. This in part motivated our choice of six nearest 
neighbors and the restriction to 20 observations as the smallest sample size we consider.  

 
Previous investigation using similar datasets of European regions have shown that the 

spatial distribution of per capita GDP is indeed characterized by spatial autocorrelation 
and that the convergence process of regions is affected by spatial spillovers (Le Gallo and 
Ertur 2003; Ertur, Le Gallo, and Baumont 2006; Le Gallo and Dall’erba 2006). The first 
point we illustrate using our estimation results therefore regards the statistical 
significance of the spatial dependence parameter ρ. Locally linear non-parametric models 
attempt to eliminate this dependence by relying on small sample sizes where spatial 
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dependence would be small or non-existent. We present kernel density estimates of the 
distribution of 138 estimates for ρ from the SALE model based on sub-sample sizes of 
m = 20, 30, 40 in Figure 1. Even in the case of the small sub-sample size of m = 20 
shown in Figure 1, we see a multi-modal distribution of the 138 estimates for ρ, suggest-
ing a great deal of variation in spatial dependence across the sample of European regions. 
The mean of these estimates is -0.07, near zero, lending support to the notion that locally-
linear methods based on small sub-samples can overcome spatial dependence. However, 
there are a number of regions where the spatial dependence estimate appears to take on 
large (positive or negative) values, indicating the presence of spatial dependence between 
elements of the y vector. This would have an adverse impact on the estimates of β for a 
number of regions in the 138 region sample. The impact of non-zero ρ values in the 
spatial autoregressive model is similar to that arising from simultaneity, resulting in 
biased and inconsistent estimates of β (see Anselin 1988).  
 

 
 

FIGURE 1. Distribution of ρ Estimates for m = 20, 30, 40 
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The distribution of ρ estimates for sub-sample sizes of m = 30 and m = 40 shown in 
Figure 1 more clearly point to larger positive modal values, suggesting that spatial 
dependence increases as the sub-sample size increases, as we would expect. In these 
cases, the majority of estimates for β would be subject to the biasing impact of spatial 
dependence among the y values. The mean of 138 estimates for ρ based on sub-sample 
sizes 30 to 80 ranged from 0.35 for the small sub-sample size of 30 up to 0.71 for the 
large sub-sample size of 80.  

 
There is also variation in the amount of spatial dependence as we move across coun-

tries, shown in Figure 2 where individual estimates for ρ are displayed. Observations 
associated with countries are delimited by vertical lines in the figure, and estimates based 
on a sub-sample size of 40 and 80 are shown. It should be clear that spatial dependence of 
a sufficiently large magnitude to create bias in least-squares estimates arises even for the 
relatively small sub-sample size of 40.  

 
 
 
 
 

Figure 2. Estimates for ρ  based on 40 80m = ,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2.  Estimates for ρ Based on m = 40, 80 
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These results suggest that inclusion of the spatial lag of the dependent variable serves 
two useful purposes. First, it acts as a parsimonious proxy for unobserved latent spatial 
influences that are typically modeled by adding numerous explanatory variables. Second, 
it allows increasing the sub-sample size used to produce locally linear estimates, which 
can stabilize the estimates and allow identification of spatial patterns or regimes. This can 
be done without introducing bias in the estimates for β that typically arises when larger 
sub-samples are used in local spatial estimation methods. 

 
Estimates for the convergence parameter β are shown in Figure 3, where again obser-

vations associated with countries are delimited by vertical lines in the figure. A set of 
three estimates based on sub-sample sizes of 60, 70, and 80 are presented. Country-level 
differences are apparent in the figure, where we see estimates change abruptly as we 
move from one country to another. In addition to distinct variation in the convergence 
parameter between countries, there is also substantial variation between regions within a 
country in some cases. Fingleton and McCombie  (1998) find similar evidence of 
heterogeneity across countries when examining European Union growth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. Estimates for β Based on m = 6, 70, 80 
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Country-level differences might suggest use of dummy variables, but the approach taken 
here allows for additional observations in cases where a country consist of only a handful of 
regions. This is because nearby regions from neighboring countries are included in the sub-
sample used to estimate the parameters. In addition, the introduction of dummy variables 
would only influence the intercept term, and our focus is on the convergence parameter β. 

 
Samples of draws generated during MCMC sampling can be used to produce esti-

mates for the standard deviations of the parameter β and associated confidence intervals. 
It should be noted that the estimates suffer from sample re-use as in the case of other 
locally linear non-parametric estimation methods. Sample observations from neighbors 
are re-used to produce estimates for each location; and in the case of neighboring obser-
vations, the amount of sample overlap would be substantial. This inhibits our ability to 
interpret these measures of dispersion in estimate outcomes in a strict statistical sense. 
Nonetheless, we provide a graphical depiction of the β estimates based on a sub-sample 
size of 80 observations along with two standard deviation intervals in Figure 4. We 
simply note that convergence indicated by negative and significant values of β is likely 
for the EU regions in Spain and Portugal as well as some regions in France. For observa-
tions associated with these regions, the estimates for the convergence parameter β are 
negative; and the upper confidence interval lies below zero, suggestive of significant 
negative values for this parameter.  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4. Upper and Lower Confidence Intervals for β Based on m = 80 
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Individual β and ρ estimates for the 138 regions based on a sample size of 80 are pre-
sented in Table 2 along with standard deviations constructed using the MCMC draws. 
Regions where the estimate for β is negative and more than two standard deviations away 
from zero are flagged in the table with the symbol *. These  parameter estimates would 
be consistent with convergence. For the case of the parameter ρ, all values were more 
than two standard deviations away from zero, so no symbols were added to the table. 
There are no cases where the positive coefficient values for β are more than two standard 
deviations away from zero, indicating divergence of the region from surrounding regions.  

 
It is interesting to note that in Table 2, only 31 of the 138 locally linear spatial auto-

regressive estimates for β are negative and significant (more than two standard deviations 
from zero), consistent with an inference of convergence. These regions tend to be 
spatially clustered in Spain, Portugal, and southern France as shown in Figure 5. Use of 
global least-squares and SAR model estimates such as those presented in Table 1 of 
Section 1 do not allow for this type of distinction. The β parameter estimates based on the 
four global models would lead to an inference of global convergence at the 95 percent 
level or above in all four cases presented in Table 1. The concept of local convergence in 
conjunction with the BSALE model proposed here provide a great deal of additional 
information regarding the nature of convergence in growth rates across a spatial sample 
of observations. The BSALE estimates suggest that convergence is taking place for some 
regions in our sample but not in others.  

 
TABLE 2 

Estimates for β and ρ 
OBS NUTS β σβ ρ σρ

1  be1 0.1265  0.3442  0.7673 0.0844   
2  be21 0.0703  0.3283  0.7586 0.0818   
3  be22 -0.0872  0.3123  0.7738 0.0789   
4  be23 0.0039  0.3123  0.7603 0.0790   
5  be24 0.0535  0.3251  0.7639 0.0811   
6  be25 -0.0982  0.3067  0.7834 0.0762   
7  be31 0.0070  0.3463  0.7605 0.0825   
8  be32 -0.0606  0.3128  0.7704 0.0820   
9  be33 -0.1795  0.3113  0.7614 0.0771   

10  be34 -0.2197  0.3159  0.7881 0.0807   
11  be35 -0.1197  0.3138  0.7745 0.0808   
12  de11 -0.2825  0.2580  0.7235 0.0868   
13  de12 -0.2864  0.2880  0.7233 0.0876   
14  de13 -0.3147  0.2854  0.7211 0.0888   
15  de14 -0.3066  0.2359  0.7171 0.0884   
16  de21 -0.1317  0.2162  0.6610 0.1019   
17  de22 -0.0809  0.2101  0.6621 0.0983   
18  de23 -0.0605  0.2115  0.6452 0.0965   
19  de24 -0.2011  0.2269  0.6834 0.0916   
20  de25 -0.2221  0.2264  0.7110 0.0909   
21  de26 -0.2637  0.2644  0.7006 0.0944   
22  de27 -0.2195  0.2256  0.6976 0.0919   
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OBS NUTS β σβ ρ σρ
23  de5 -0.0696  0.3149  0.7506 0.0849   
24  de6 -0.1511  0.3350  0.7412 0.0840   
25  de71 -0.2574  0.3051  0.7147 0.0922   
26  de72 -0.1204  0.3085  0.7033 0.0884   
27  de73 -0.1966  0.3019  0.7137 0.0932   
28  de91 -0.2483  0.2851  0.7458 0.0904   
29  de92 -0.1110  0.3104  0.7221 0.0896   
30  de93 -0.0381  0.3118  0.7522 0.0875   
31  de94 -0.1534  0.3047  0.7928 0.0789   
32  dea1 -0.1742  0.3297  0.7470 0.0806   
33  dea2 -0.2194  0.3139  0.7528 0.0837   
34  dea3 -0.1463  0.3112  0.7405 0.0795   
35  dea4 -0.1064  0.3103  0.7356 0.0895   
36  dea5 -0.1339  0.3171  0.7326 0.0850   
37  deb1 -0.2030  0.3111  0.7494 0.0842   
38  deb2 -0.2660  0.3123  0.7439 0.0847   
39  deb3 -0.1337  0.3013  0.7211 0.0844   
40  dec -0.2652  0.3078  0.7345 0.0850   
41  def -0.0324  0.3050  0.7382 0.0837   
42  dk -0.1784  0.3062  0.7973 0.0738   
43  es11* -0.9529  0.2284  0.6055 0.0934   
44  es12* -0.8981  0.2397  0.5882 0.0956   
45  es13* -0.8828  0.2433  0.5757 0.0972   
46  es21* -0.8472  0.2327  0.5866 0.0955   
47  es22* -0.8067  0.2416  0.5926 0.1046   
48  es23* -0.8367  0.2404  0.5903 0.1020   
49  es24* -0.8080  0.2440  0.5880 0.1064   
50  es3* -0.8296  0.2419  0.5913 0.1001   
51  es41* -0.8826  0.2362  0.5826 0.0971   
52  es42* -0.9053  0.2492  0.5776 0.1048   
53  es43* -0.9778  0.2402  0.6198 0.1005   
54  es51* -0.8109  0.2332  0.5509 0.1085   
55  es52* -0.9414  0.2539  0.5366 0.1139   
56  es53* -0.7892  0.2383  0.5178 0.1102   
57  es61* -0.9604  0.2413  0.5983 0.0963   
58  es62* -0.9545  0.2606  0.5344 0.1144   
59  fr1 -0.4370  0.2779  0.7797 0.0784   
60  fr21 -0.2209  0.3377  0.7213 0.0928   
61  fr22 -0.1429  0.3156  0.7448 0.0878   
62  fr23 -0.2334  0.2778  0.7045 0.0907   
63  fr24 -0.2298  0.2587  0.6597 0.0919   
64  fr25 -0.2424  0.2165  0.6067 0.0929   
65  fr26* -0.6516  0.3209  0.7180 0.0993   
66  fr3 -0.0549  0.3161  0.7810 0.0842   
67  fr41 -0.2754  0.3073  0.7473 0.0839   
68  fr42 -0.2344  0.3008  0.7195 0.0869   
69  fr43 -0.3660  0.2929  0.7037 0.0900   
70  fr51* -0.5063  0.2321  0.5635 0.1035   
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OBS NUTS β σβ ρ σρ
71  fr52* -0.8784  0.2505  0.5367 0.1021   
72  fr53* -0.6159  0.2475  0.5418 0.1074   
73  fr61* -0.7290  0.2477 0.5638 0.1026   
74  fr62* -0.4777  0.2150 0.5003 0.1194   
75  fr63 -0.3155  0.2185 0.6185 0.0978   
76  fr71* -0.6536  0.2949 0.6966 0.0999   
77  fr72* -0.5235  0.2458 0.6629 0.1052   
78  fr81 -0.3972  0.2135 0.5754 0.1105   
79  fr82 -0.4783  0.2419 0.7016 0.0884   
80  gr11 -0.1155  0.1817 0.6062 0.1079   
81  gr12 -0.1547  0.1858 0.5879 0.1064   
82  gr13 -0.1812  0.1857 0.6188 0.1065   
83  gr14 -0.1617  0.1866 0.6220 0.1083   
84  gr21 -0.2089  0.1844 0.5850 0.1114   
85  gr22 -0.1501  0.1749 0.6405 0.1024   
86  gr23 -0.1873  0.1858 0.6210 0.1102   
87  gr24 -0.0759  0.1725 0.6008 0.1103   
88  gr25 -0.1908  0.1757 0.6208 0.1074   
89  gr3 -0.1886  0.1964 0.5836 0.1154   
90  gr41 -0.0904  0.1919 0.5845 0.1097   
91  gr42 -0.1135  0.1829 0.5821 0.1079   
92  gr43 -0.1481  0.1723 0.6428 0.1060   
93  it11 -0.4943  0.2629 0.6825 0.0961   
94  it12 -0.5118  0.2725 0.7027 0.0926   
95  it13 -0.1665  0.2006 0.6727 0.0970   
96  it2 -0.0976  0.2019 0.7187 0.0873   
97  it31 -0.0756  0.1800 0.6922 0.0909   
98  it32 -0.0678  0.1812 0.7005 0.0925   
99  it33 -0.0264  0.1749 0.6883 0.0919   

100  it4 -0.0933  0.1903 0.6614 0.1012   
101  it51 -0.0981  0.1916 0.6748 0.0990   
102  it52 -0.0947  0.1589 0.6820 0.0978   
103  it53 -0.0565  0.1714 0.6754 0.1023   
104  it6 -0.0952  0.1680 0.6704 0.0973   
105  it71 -0.0951  0.1769 0.6139 0.1048   
106  it72 -0.1186  0.1912 0.5818 0.1137   
107  it8 -0.2119  0.1814 0.6346 0.1078   
108  it91 -0.2007  0.1810 0.6226 0.1045   
109  it92 -0.2078  0.1823 0.6307 0.1079   
110  it93 -0.2123  0.1838 0.6351 0.1073   
111  ita -0.3251  0.1786 0.6641 0.0969   
112  itb -0.1837  0.1904 0.6836 0.0939   
113  lu -0.2880  0.2983 0.8040 0.0752   
114  nl12 -0.0172  0.3131 0.7954 0.0742   
115  nl13 -0.1470  0.2980 0.7908 0.0706   
116  nl2 -0.1272  0.3108 0.7866 0.0755   
117  nl31 -0.0648  0.3039 0.7947 0.0720   
118  nl32 0.0327  0.3051 0.7826 0.0732   
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OBS NUTS β σβ ρ σρ
119  nl33 0.0414  0.3229 0.7659 0.0795   
120  nl34 -0.0369  0.3167 0.7799 0.0827   
121  nl41 -0.0431  0.3182 0.7821 0.0772   
122  nl42 -0.1558  0.3109 0.7819 0.0816   
123  pt11* -0.7989  0.2427 0.5621 0.0998   
124  pt12* -0.8297  0.2405 0.5388 0.1013   
125  pt13* -0.8889  0.2471 0.5222 0.1051   
126  pt14* -0.8789  0.2725 0.5446 0.1086   
127  pt15* -0.8882  0.2457 0.5369 0.1047   
128  uk1 -0.0351  0.2141 0.6803 0.0871   
129  uk2 -0.1025  0.2502 0.7078 0.0856   
130  uk3 -0.1085  0.2554 0.6858 0.0928   
131  uk4 -0.2146  0.3115 0.7332 0.0855   
132  uk5 -0.1517  0.2779 0.6553 0.0957   
133  uk6* -0.7126  0.2870 0.5241 0.1071   
134  uk7 -0.1408  0.2375 0.6389 0.0942   
135  uk8 -0.0041  0.2123 0.6752 0.0877   
136  uk9 -0.5423  0.3013 0.5389 0.1107   
137  uka -0.0211  0.2172 0.6869 0.0847   
138  ukb* -0.7504  0.2520 0.6019 0.0990   

 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

FIGURE 5. Converging and Non-Converging Regions 
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5. CONCLUSIONS 
 

We argue that problems created for conventional convergence regressions by shifts in 
regime as one moves across the spatial regions can be accommodated by a Bayesian 
spatial autoregressive locally linear estimation approach. Additional problems that arise 
due to non-constant variance and outliers can also be ameliorated using this approach. 
We define a local convergence concept and provide an estimation method that we label 
BSALE to draw inferences regarding this notion of convergence. We demonstrate that 
inferences regarding convergence differ when using the BSALE methodology and more 
traditional SAR models based on the entire sample.  

 
One aspect of this methodology is reliance on a spatial autoregressive model to 

account for latent unobservable factors that influence economic growth but are not typi-
cally accounted for in β-convergence models. We argue that as in the case of lagged 
dependent variables in time-series modeling, spatial lags can filter adverse impacts aris-
ing from excluded variables. Another key facet of our BSALE approach is the use of a 
robust Bayesian variant of the spatial autoregressive local estimation (SALE) model set 
forth in Pace and LeSage (2004). This type of locally linear sub-sample estimation 
produces estimates that converge to robust Bayesian spatial autoregressive estimates 
based on the entire sample as the size of the sub-sample increases towards use of all 
observations. This allows practitioners to avoid use of a single bandwidth or sub-sample 
size on which they will ultimately proceed to draw inferences. The continuous nature of 
the mapping  between  locally  linear  and global estimates allows one to consider the role  
of sub-sample size on the resulting conclusions regarding convergence. For our sample of 
138 European regions, we find evidence of substantial spatial dependence for a number 
of regions. The convergence parameter β varies substantially among countries as well as 
among regions within a country. More precisely, we find some evidence of convergence 
for a total of 31 regions in Spain and Portugal as well as some regions in southern France. 
These conclusions regarding convergence are similar for sub-sample sizes varying from 
roughly one-fourth to three-fourths of the sample size. 
 

There are several areas where the approach set forth here could be extended or 
enhanced. These methods could be extended to the case of a spatial Durbin model, where 
spatial lags of the initial levels are included as an explanatory variable in the model. 
Spatial error models where the disturbances are modeled as following a spatial auto-
regressive process would be another extension of the approach. A place for enhancement 
would be a formal method for identifying the optimal sub-sample size to use in the 
Bayesian SALE estimation method.  
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APPENDIX. MCMC SAMPLER FOR THE HETEROSCEDASTIC SAR MODEL 
 

Extension of the Bayesian heteroscedastic linear regression model of Geweke (1993) 
to the case of a spatial autoregressive model is described here along with the MCMC 
estimation scheme. This model takes the form:  

 
(A1) y = ρWy + X β + ε 
 
where y, X, and ε are as described above and the scalar parameter ρ measures the strength 
of spatial dependence, with the term Wy representing a spatial lag of the dependent 
variable. This model suggests that growth rates in neighboring areas measured by the 
spatial lag Wy exert an influence on the growth rate of region i. This dependence is intro-
duced in the model by the N by N spatial weight matrix, which has values of 0.1 in row i 
column j for observations j representing the nearest 10 neighbors to observation i. Other 
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elements of the matrix W are set to zero. This produces an explanatory variable Wy 
reflecting the average growth rates from the 10 nearest neighboring regions.  
 

The likelihood function for this model includes an additional term reflecting the 
Jacobian of the transformation from ε to y, WIn ρ− , taking the form:  

 

( )

( ) ( .*X*Wy*y*X*Wy*y

hhWI,h,,yp N

N
N

n

⎥⎦
⎤β−ρ−′β−ρ−•

⎢
⎣

⎡
⎜
⎝
⎛−

π
ρ−=⎟

⎠
⎞

⎜
⎝
⎛ Ωβρ

2
exp

2 2

2
2a

))

 

 
The conditional posterior distributions for β and h take similar forms to those for the case 
of a Bayesian linear regression model with a re-definition of:  
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Sampling for the parameters β, h, λi, and dλ can be achieved using an analogous approach 
to that for the heteroscedastic linear regression model, e.g., Koop (2003).  
 

For the case of diffuse priors for β, the conditional posterior for the parameter ρ 
reflecting spatial dependence takes the form:  
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where p(ρ) denotes the uniform prior on [ ]1,1−∈ρ . A problem arises here in that this 
distribution is not one for which established algorithms exist to produce random draws. 
We can, however, rely on univariate numerical integration of the conditional posterior of 
ρ. This requires evaluating the conditional posterior over a grid of values from -1 to 1, 
which can be efficiently done using a vectorization approach described in Pace and Barry 
(1997) for maximum likelihood estimation of this model. They provide a computationally 
efficient approach to calculating the log determinant term involving (In – ρW) over a grid 
of values from -1 to 1, which can be implemented prior to beginning the MCMC sampler.  
 

Applying a log transformation to the conditional posterior we can express the term 
log(s2) as a vector over a grid of j = 1, …, q values for the parameter ρ ranging from -1 to 
1, taking the form:  
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where , j = 1, …, q, resulting in:  ( ) ddjodjoo eeeeee ′ρ+′ρ−′=ρφ 2
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This vectorization along with a vector of values from calculation of the k by k log deter-
minant term: │X′ Ω–1X│(which does not depend on ρ) and the vectorized log determinant 
of (In – ρW) over the grid of q values for ρ results in a simple numerical integration 
problem that can be solved rapidly using Simpson’s rule. Results from this integration are 
used to construct the cumulative distribution function for the conditional posterior distri-
bution of the parameter ρ that is then used to produce a draw from this distribution using 
“inversion.” Keep in mind that on the next pass through the MCMC sampler, we need to 
integrate the conditional posterior again. This is because the distribution is conditional on 
changing values for the other parameters λi, β, h in the model, which obviously produce 
an altered expression for s2 and │X′ Ω–1X│in the conditional distribution for ρ.  
 

Following Koop (2003), we implemented this model using a hyperparameter λ to 
control the degree prior belief in heteroscedasticity. The global sample data was used to 
produce a posterior distribution for the parameter dλ. The posterior estimate for dλ indi-
cated heteroscedasticity, having a mean of 3.98, median equal to 3.74, and mode of 3.60. 
The posterior distribution for dλ is shown in Figure A1.  
 

The posterior mean from this global estimation was used as a degenerate prior in the 
locally linear models. This saves the computational burdens associated with the tuning 
parameter c for the random-walk Metropolis-Hastings sampling of the parameter dλ 
during the locally linear estimation procedures. Experimentation with the global sample 
indicated that use of the fixed value for dλ near the posterior mean from the estimate 
produced estimates and inferences very similar to those for the case where this parameter 
was estimated rather than fixed. 
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FIGURE A1. Posterior Distribution for SAR Model Parameter λ 
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