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ABSTRACT. The choice of weights is a non-nested problem in most applied spatial 
econometric models.  Despite numerous recent advances in spatial econometrics, 
the choice of spatial weights remains exogenously determined by the researcher in 
empirical applications. Bayesian techniques provide statistical evidence regarding 
the simultaneous choice of model specification and spatial weights matrices by 
using posterior probabilities.  This paper demonstrates the Bayesian estimation 
approach in a spatial hedonic property model estimating the impacts of repeated 
wildfires on house prices in Southern California.  We find that improper choice of 
spatial model and weights can result in up to 5 percent difference in estimated 
coefficients and in our case study up to a $15 Million difference in total benefits 
of reducing wildfires in Los Angeles County. 

Key Words: Spatial Hedonic Models, Wildfires, Bayesian Estimation 

JEL Classification Codes: Q17, R18, C3 

1. INTRODUCTION 
Evaluating the effects of residential area environmental amenities, land uses, and hazards 

on society has frequently involved using differences in house prices to reveal the marginal 
benefits or costs to households. The results of these hedonic property estimations are often 
incorporated into benefit-cost analyses with policy implications.  Thus, it is essential for policy-
makers to have accurate measurements of estimated implicit prices from hedonic property 
models.  Since hedonic property models are based on the selling prices of homes within the same 
geographical area, the models are spatial in nature.  Proper specification of the spatial models is 
essential for unbiased and efficient parameter estimates.  

Testing for and modeling spatial dependence involves use of a spatial weights matrix.  At 
present, the spatial weights matrix is exogenously chosen by the researcher and implemented 
prior to estimation of the models.  Despite increased use of spatially corrected models and 
importance of the spatial weights in model selection, little statistical guidance is available to aid 
the researcher in choosing the spatial weights matrix when estimating spatial models (Anselin, 
2002). In addition, testing for the presence of spatial dependence and determining the appropriate 
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spatial model specification is conditioned on the researcher’s exogenous specification of a spatial 
weights matrix.   

When comparing results from Maximum Likelihood estimations to those from General 
Method of Moments, Bell and Bockstael (2000) found that coefficient estimates from a spatial 
hedonic property model were more sensitive to the choice of weighting matrix than to the 
method of estimation. They compared 10 coefficients estimated with 6 different weighting 
matrices and calculated a percent difference in coefficients equal to the difference in the 
estimates divided by the mean of the two estimates.  The average percent difference in 
coefficient estimates was 201 percent, with some estimations differing by as much as 1,000 
percent.  Given that the estimated coefficients in hedonic property models are used to inform 
policies, the large variation in estimated coefficients due to the researcher’s choice of spatial 
weights matrix could result in major differences in the policy implications of estimated implicit 
prices. Bell and Bockstael note that with Maximum Likelihood and General Method of Moments 
estimation techniques “nested tests of alternative spatial weight matrices are computationally 
infeasible for large datasets, and non-nested tests have not proved particularly helpful.”  In 
contrast, LeSage and Pace (2010) find that spatial weights matrices matter little when effect 
estimates are calculated correctly. We use posterior probabilities to choose both weights and 
specification, and our data supports the claim of LeSage and Pace—we find only small 
differences in effects due to spatial weights.   

The spatial weights matrix is an n × n array representing neighbor relationships between 
all observations in a given dataset. Thus, when choosing the weights, the researcher is essentially 
making (n - 1) × n choices about neighbor relationships (one decision for each observation in the 
sample relative to all other observations) and if using traditional ML techniques, all neighbor 
decisions must be made before testing for spatial dependence and choosing model specification.  
Traditionally, researchers will choose the spatial weights matrix that maximizes the value of 
Moran’s I statistic as a best practice approach.  In this paper, we offer an alternative method for 
choosing spatial weights. Bayesian estimation techniques allow comparison of posterior 
probabilities for the non-nested problem of simultaneously choosing spatial weights and spatial 
model specification. Testing whether an environmental feature has a statistically significant 
effect on house prices requires precise coefficient estimates. The magnitude of the coefficients 
determines the magnitude of implicit prices, thus obtaining efficient and unbiased estimates is of 
direct importance to policy applications. A subset of possible spatial weights is chosen for 
demonstrating our approach, and these weights are typical for hedonic property analyses. Our 
approach could be used to choose among any number of potential weights that might be 
appropriate for the particular spatial model being estimated. Therefore, the use of Bayesian 
techniques is worth investigating. To the authors’ knowledge, this is the first application of 
Bayesian methods to simultaneously inform model choice and spatial weights matrix choice in a 
hedonic property model. 

2. SPATIAL HEDONIC PROPERTY MODELS 
The hedonic property method is well established as a revealed preference method for 

obtaining non-market values of environmental amenities or hazards such as air quality 
improvements (Kim et al., 2003), water quality (Leggett and Bockstael, 2000) and nuclear waste 
transport (Gawande and Jenkins-Smith, 2001). Rosen (1974) first proposed the detailed 
theoretical construct for the hedonic property model based on the proposition that identical 
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houses in otherwise similar neighborhoods will have different prices if the neighborhoods have 
different levels of an environmental amenity.  In order to determine the marginal implicit price of 
an environmental amenity using a hedonic property model, it is thus necessary to control for 
other characteristics that determine house price, such as structural characteristics, neighborhood 
demographics, and housing market trends. See Taylor (2002) and Palmquist (1991) for a 
comprehensive discussion of the theoretical aspects of hedonic property models.  

Although past hedonic property models have incorporated several distance measures to 
amenities or hazards as explanatory variables, failure to properly model and account for spatial 
dependence causes econometric problems that may result in biased and inefficient coefficient 
estimates (Brasington and Hite, 2005). Following Kim, Phipps, and Anselin (2003) if data 
exhibit a spatial lag process, a Spatial Autoregressive (SAR) model is appropriate.  A SAR 
model uses Maximum Likelihood (ML) techniques to estimate  
(1) 𝐲 =   𝜌𝐖𝐲+ 𝐗𝛃 + 𝛆  

with y as the dependent variable where X is a matrix of independent variables including a 
constant term, W is the n by n weighting matrix, β is a vector of estimated coefficients, ε ~ 
MVN(0, σ2In), ρ is the spatial autoregressive parameter and In is an 𝑛 × 𝑛 identity matrix. 

    Spatially correlated errors are likely to occur when measurement error is related to location 
(Anselin and Bera, 1998).  In a hedonic property model, if some neighborhood effects are not 
captured in the demographic characteristics, OLS will result in spatially correlated errors and 
hence be inefficient. The Spatial Error Model (SEM) is as follows: 

(2a) 𝐲 =  𝑿𝛃 + 𝐮  

(2b) 𝐮 =  𝜆𝑾𝐮 + 𝛆 
Here, λ is a coefficient on the spatially correlated errors.   

 A more general spatial specification is that of the Spatial Durbin Model (LeSage and 
Pace, 2009).  The SDM allows for a spatially lagged dependent variable as well as spatially 
lagged explanatory variables.  A Spatial Durbin Model is applicable when uncertainty about the 
nature of the spatial dependence exists. Because hedonic property models provide the possibility 
of having spatial dependence in both the explanatory variables and the dependent variable, a 
SDM is a reasonable model to explore.  The SDM is specified as: 

(3) 𝐲 =   𝜌𝐖𝐲+ 𝐗𝛃 + 𝐖𝐗𝛄+ 𝛆 

where γ represents the estimated coefficients on the spatially weighted explanatory variables. 

3. SPATIAL WEIGHTS 
 As seen in Equations (1)–(3), correcting for spatial dependence involves the use of a 
spatial weights matrix. The weights matrix models the “neighbor” relationship within the 
observations of the dependent variables.  Weights can be based on contiguity or distance.  The 
nature of most hedonic property data dictates spatial weights based on distance because house 
sale data do not provide information on parcel borders and it would be unlikely to have sales of 
adjacent houses in the same time period.   Intuitively, each of our houses is considered a point in 
space. W is an n × n weights matrix with zeros on the diagonal.  Wherever there is a nonzero 
element in the weights matrix, we consider two parcels “neighbors.”  If observations i and j are 
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not considered neighbors, wij=0. MATLAB1 was used to generate four weighting matrices to be 
used in our estimations—three are based on nearest neighbor rule and one on Euclidean distances 
between observations.   

 For purposes of calculating a distance matrix, let the distance between two parcels be 
represented by di,j.  With a distance matrix, we consider parcels “neighbors” if they are located 
within the minimum Euclidean distance such that every parcel has at least one neighbor.  
Suppose this distance equals b.  For each parcel i, let z represent the number of neighbors within 
Euclidean distance b from parcel i.  For our distance-based weights matrix, wij = dij, 𝑤𝑖𝑗 = 𝑑𝑖𝑗  if 
di,j < b.   
 With Bayesian estimation techniques for spatial econometrics, the choice of spatial 
weights matrix and spatial model are often made jointly, and can be analyzed using posterior 
probabilities. The use of Bayesian estimation to test hypotheses is relatively common in 
statistics, although only relatively recently used in applied econometrics. Kass and Raftery 
(1995) exemplify several situations in which they use Bayesian estimation methods. In 
particular, they emphasize the idea that post-estimation model choice when using posterior 
probabilities does not require alternative methods to be nested.  Hepple (2004) clearly outlines a 
brief application of Bayesian estimation methods as do LeSage and Pace (2009). 

4. BAYESIAN ESTIMATION 
Bayesian estimation is based on inference using Bayes’ Theorem. Let θ represent a vector 

of k unobserved parameters, and suppose our DATA is a matrix of n observations dependent 
upon these unobserved parameters.  Bayes’s Theorem is given in Equation (4): 

(4) 𝑓(𝜃|𝐃𝐀𝐓𝐀) =  𝑓(𝐃𝐀𝐓𝐀|𝜃)𝑓(𝜃)
𝑓(𝐃𝐀𝐓𝐀)

 

Where 𝑓(𝜃|𝐃𝐀𝐓𝐀) is the posterior distribution of θ, 𝑓(𝐃𝐀𝐓𝐀|𝜃) is the sampling 
distribution for θ (proportional to the likelihood), 𝑓(𝜃) is the prior density of the data, 
and  𝑓(𝐃𝐀𝐓𝐀)  is the “marginal likelihood” or   In other words, Bayes’ Theorem states: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟 where ∝ denotes “is proportional to.” The posterior 
distribution contains all the information needed to make inferences about individual parameters 
θ1…θk.  𝑓(𝜃) represents our beliefs about the parameter θ before any data are observed.  This 
“prior” belief about θ illuminates the subjective philosophy of Bayesian estimation.  However, it 
also allows the researcher to incorporate valuable prior knowledge about the estimated 
parameters.  𝑓(𝐃𝐀𝐓𝐀), or the “marginal likelihood” is essential in Bayesian model comparisons.  
The mathematically intensive part of Bayesian estimation is finding a solution to this open 
integral.   

 We use Bayesian estimation with Markov Chain Monte Carlo (MCMC) techniques (i.e. 
the Gibbs sampler and the Metropolis-Hasting Algorithm) to find the marginal posterior 
distributions for each parameter. Gibbs sampling is a relatively basic MCMC method that can be 
used when sampling from a multivariate posterior is not feasible, but sampling from the 
conditional distributions for each parameter is feasible (Lynch, 2007). When this is not feasible 
(as in the case of the spatial autocorrelation parameter) we utilize the Metropolis-Hastings 

                                                 
1 Code for generating the distance based weights matrices was found at Donald Lacombe’s website: 
http://www.rri.wvu.edu/lacombe/matlab.html.  

http://www.rri.wvu.edu/lacombe/matlab.html
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Algorithm.  A thorough explanation of the mathematics behind the Gibbs sampler is beyond the 
scope of this paper.  Readers are referred to Lacombe (2008) and LeSage and Pace (2009) for a 
mathematical introduction to MCMC Gibbs sampling methodology in the context of spatial 
econometrics. 
5. BAYESIAN MODEL CHOICE 

Following the development of Bayesian model choice by Hepple (2004), suppose we 
want to compare two models, Mk and Mj using Bayes’s Theorem.  If so,  

(5) 𝑝(𝐌𝑘|𝐃𝐀𝐓𝐀) =  𝑝(𝐃𝐀𝐓𝐀|𝐌𝑘)
𝑝(𝐌𝑘|𝐃𝐀𝐓𝐀)+ 𝑝(𝐃𝐀𝐓𝐀|𝐌𝒋)

𝑝(𝐌𝑘)
𝑝(𝐌𝒋)

 

where 𝑝(𝑑𝑎𝑡𝑎|𝑀𝑘) is the marginal likelihood of the data given Mk and 𝑝(𝑀𝑘) is the prior 
probability of the model Mk The extent to which the data favors one model over the other can be 
represented by the ratio of their posterior probabilities, or the posterior odds Okj, where: 

(6) 𝑂𝑘𝑗 = 𝑝(𝐌𝑘|𝐃𝐀𝐓𝐀)
𝑝(𝐌𝑗|𝐃𝐀𝐓𝐀)

= 𝑝(𝐃𝐀𝐓𝐀|𝐌𝑘)
 𝑝(𝐃𝐀𝐓𝐀|𝐌𝒋

𝑝(𝐌𝑘)
𝑝(𝐌𝒋)

 

Thus, the odds ratio for any pair of models, 𝑂𝑘𝑗 = 𝜋𝑘
𝜋𝑗

 , where 𝜋𝑗 is the posterior 
probability of model j. When comparing n possible models, if each of the models have equal 
prior probabilities, the posterior probability, πj  for model j is given in Equation (7) 

(7) 𝜋𝑗 = 𝑝(𝐃𝐀𝐓𝐀|𝐌𝒋)
∑ 𝑝(𝐃𝐀𝐓𝐀|𝐌𝒊)𝑛
𝑖=1

 

and the researcher can compare several models using posterior probabilities.   If the researcher 
believes several models to be equally probable, then post-Bayesian analysis, they should choose 
the model with the highest posterior probability.  In the empirical analysis that follows, we 
illustrate how the Bayesian analysis allows us to simultaneously identify the appropriate spatial 
model and spatial weights matrix. We estimate six models using Bayesian analysis and choose 
the model with the highest posterior probability.  We then compare differences in the implicit 
prices between the Bayesian identified “best” model and the other five model specifications. 

6. DATA 
 We draw upon a rich dataset with repeated wildfires in Southern California. The 
dependent variable is the house sale price.  A log-linear specification allows the marginal effect 
of each independent variable to vary with the level of the dependent variable, hence the marginal 
implicit price of an attribute changes as house price varies.  This functional form has been shown 
to be a robust functional form in the face of limitations in the data (Cropper et al., 1988).  The 
general hedonic property model follows the general form: 

(8)  𝑃𝑖𝑡  =  𝑓 (𝐸𝑖𝑡 , 𝑆𝑖,𝑁𝑖 , ) 
Where Pit: Sale amount at decision date t, with sale amount deflated using the annual housing 
price index for Los Angeles, Orange, and Riverside Counties (1983 Base Year), Eit: 
Environmental variables of interest (e.g., wildfires) for house i at time t, Si,: Structural 
characteristics of house i, and Ni,: Neighborhood demographics for house i. Our data is a cross 
section of single sales of single family homes.  For each observation, we have information on the 
sale date of the home and its sale price.  We used the sale date to determine the dummy variables 
representing whether a house sold after one or two wildfires. 
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The following are the independent variables included in our empirical specification:  

 Eit: Environmental and Location Variables: 
(i) After One Fire: An indicator variable that equals one if a house sold after 

and is located within 1.75 miles of one wildfire2 
(ii) After Two Fires: An indicator variable that equals one if a house sold after 

and is located within 1.75 miles of two wildfires  
(iii) Days Since Most Recent Fire: Number of days since the most recent 

wildfire  
(iv) Distance to USFS Land: to the edge of the nearest National Forest owned 

land (meters) 
(v) Elevation: Elevation of the house lot (meters) above sea level 

The elevation of a house lot serves as a proxy for vegetation type (higher elevations tend to have 
more flammable vegetation in southern California).  Houses located at higher elevations and 
nearer to forests have a higher risk of burning from a wildfire.   

 Si: Housing Structure Variables: 
(i) Square feet  
(ii) Number of Bedrooms 
(iii) Number of Bathrooms 
(iv) Year Built  

Many of the housing characteristics are highly correlated. When all structural characteristics are 
included, the model shows signs of collinearity problems. Square feet is a commonly used 
explanatory variable in hedonic property models to control for size of housing structure, and 
therefore is the structural characteristic we decided to include. Number of Bedrooms is highly 
correlated with Square Feet, and is therefore dropped in the final specification.  We also include 
Year Built as a measure of housing structure quality.  

 Ni: Neighborhood Demographics Factors: 
(i) Median Household Income: Median household income in census tract 

(Year 2000 dollars) 
(ii) Percent with No High School Degree: Percent of residents in census tract 

above 18 years old with no high school degree  

Other neighborhood characteristics commonly included in hedonic models are school district 
quality and household income (Taylor, 2002).  A direct measure of school district quality is 
unavailable within our data, so a measure of the percent with no high school degree in a 
neighborhood is used as a proxy for the relative level of educational attainment in a particular 
community.  Neighborhoods with high percentages of educated people generally have higher 
quality schools. Median household income is also included as a proxy for neighborhood 
desirability.  

General trends in real house prices may occur over time. To reflect these general market 
trends in the real house prices, we include a variable that indicates the time period of the sale of 
the house.  We have single sale house price data with the sale date for each observation.  We use 

                                                 
2 The authors performed sensitivity analysis of different distance cutoffs and chose the 1.75-mile distance to keep a relatively 
large sample. Please see Mueller et al. (2009) for a detailed description of this analysis.  
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the sale date for each observation to generate a single value for the time trend variable and values 
for the After Fire indicator variables.  The empirical model specification is as follows: 3 

(9) Log (Real Sale Amount) = β0 + β1*After One Fire+β2*After Two Fires + 
β3*Days Since Most Recent Fire + β4*Square Feet + β5*Year Built + 
β6*% with no High School Degree + β7*Median Household Income+ 
β8*Distance to USFS Land + β9*Elevation + β10*Trend + ε 

7. APPLICATION TO SPATIAL HEDONIC PROPERTY MODEL 
We use Bayesian estimation methods to estimate several spatial hedonic property models.  

Equations (1), (2a), and (3) are estimated using the same dependent variable and independent 
variables, but with each of the four different types of weight matrices—4, 6 and 8 nearest 
neighbors, and distance.  The Bayesian models are estimated using Gibbs sampling with 11,000 
iterations, omitting the first 1,000 draws.  With our Bayesian model, we use posterior 
probabilities to inform our choice of spatial models.4  The prior value for β is 0 with a covariance 
of 1E+6 from a multivariate normal distribution.  The prior distribution of σ is Γ(0,0), and the 
prior distributions of ρ and λ are uniform(-1,1).   

7.1. Model Comparison 
We estimate and compare posterior probabilities for SEM, SAR, and SDM models using 

all four weights matrices.5 Recall from Equation (7) that for Bayesian model comparison, post-
estimation the researcher should choose the model with the highest posterior probability.  As 
mentioned, the models need not follow the same specification of spatial dependence or spatial 
weights in order to use posterior probabilities to perform model comparisons.  The posterior 
probabilities are reported in Table 1.6 All models had plausible and consistent signs on the 
variables of interest. When estimating all twelve Bayesian spatial models, the posterior 
probability of the SEM model with distance-based weights is the highest.  The sum of the 
posterior probabilities sums to one, with the probability on the SEM model with distance-based 
weights very close to one, and the other probabilities quite small. Therefore, we have strong 
evidence to conclude that the SEM with distance weights best represents the true data-generating 
process.   

 

                                                 
3 An anonymous reviewer pointed out that all hedonic property equations such as Equation (9) suffer from endogenous 
explanatory variables. Besides econometric solutions, another solution to endogeneity is selecting a case study that involves a 
“natural experiment” in which a treatment variable is randomly assigned. Our study applies this natural experiment approach.  In 
particular, whether a house was close to zero, one or two fires, and how many days passed between forest fires are exogenous 
events.  We also note that the purpose of this paper is not to derive specific implicit prices to be used for benefit-cost analysis or 
policy purposes. Rather we wish to compare implicit prices among models that use exogenously chosen weights and weights 
chosen via a Bayesian approach. To the extent there is endogeneity it should equally affect all the implicit prices, but their 
comparative differences by spatial weights would likely not be changed. 
4 Bayesian model averaging can also be used to inform model choice with a large number of possible models and posterior 
probabilities to estimate.  Detailed analysis of Bayesian averaging can be found in LeSage and Parent (2007).  Because of the 
high posterior probability estimated on the SEM model with distance-based weights, and the computation time involved with 
Bayesian model averaging, the authors chose not to apply this methodology, and point to it as a valuable avenue for future 
research. 
5 We use the “model_probs” code from the Jim LeSage’s spatial econometrics toolbox.  The toolbox and all supporting 
documentation are available at www.spatial-econometrics.com. 
6 Full results from all models are available from the authors.  

http://www.spatial-econometrics.com/
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Table 1: Posterior Probabilities of Estimated Models 

 4NN 6NN 8NN Distance 
SEM 5.68E-26 2.87E-23 1.94E-21 1.00E+00 
SAR 5.23E-33 6.00E-33 5.37E-33 2.51E-16 
SDM 6.55E-48 5.18E-45 2.36E-42 5.81E-24 

7.2. Estimated Implicit Prices  
The parameter estimates from our spatial models contain information about the impact of 

a wildfire on house prices for individual homes, yet they also contain information about the 
impact of a wildfire on the house prices in the neighborhood.  In the SAR and SDM models, 
changes in the wildfire variables will result in both a direct impact on the individual house, and 
an indirect impact that is the average impact on the neighborhood as defined by the spatial 
weights W.  The estimated implicit price from a semi-log hedonic SEM is simply �̂� × 𝑦� because 
the SEM model is a special case of the Spatial Durbin model where the spatial autoregressive 
parameter, ρ=0.  In contrast, the impact of a wildfire in our SAR and SDM models will have a 
spatial multiplier effect on y that can be expressed using a multiplier term 𝑆𝑟(𝐖), where 𝑆𝑟(𝐖) 
takes different forms depending upon the spatial model (LeSage and Pace, 2009).  An average of 
the diagonal of the matrix 𝑆𝑟(𝐖) represents an average direct impact.  The indirect impacts work 
through the spatial autoregressive parameter, ρ, and allow spillovers from a change in one 
explanatory variable to impact the value of an individual observation and its neighbors through 
the spatial weights.  As discussed in Section 7.1, our model comparison leads us to the 
conclusion that the data-generating process is best represented by the SEM.7  The direct impacts 
of variable r can be represented by 

(10) 𝑀�(𝑟)𝑑𝑖𝑟𝑒𝑐𝑡 =  𝑛−1𝑡𝑟(𝑆𝑟(𝐖)).  
It should be emphasized that there are no indirect impacts in the SEM model because there is no 
spatial autoregressive parameter.  

For the SAR model, 𝑆𝑟(𝐖) = (𝐈𝑛 − 𝜌𝐖)−1(𝐈𝒃𝛽𝑟) and for the SDM, 𝑆𝑟(𝐖) =
(𝐈𝑛 − 𝜌𝐖)−1(𝐈𝑏𝛽𝑟 + 𝐖𝜃𝑟).  We obtain estimates of direct impacts for the After Fire variables 
during the MCMC sampling process of our Bayesian estimation.   

7.3 Policy Implications 
As shown in Table 2, the estimated coefficient on After One Fire is -0.1767 in the SEM 

with distance weights.  The mean house sales price (in 1983 dollars) is $152,967.  Using the 
Housing Price Index for California8 this equates to approximately $570,000 in today’s dollars.  
In today’s dollars, the SEM estimation using the distance matrix indicates that house prices will 
drop approximately $100,537 after one fire.  In today’s dollars, the SEM estimation using the 
distance  matrix  indicates  that  house  prices  will  drop  approximately $106,093 after one fire.   

                                                 
7 Indirect and total impacts are available from the authors upon request. However, it is important to note that the total effects are 
not significant in the SDM models. We choose to use direct impacts to have a more meaningful comparison of estimated implicit 
prices from different model specifications. 
8 http://research.stlouisfed.org/fred2/series/CASTHPI 
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Table 2: SEM Estimation Results Using Distance-based Weights 

Variable (n=1,762) Coefficient Std Deviation p-level 
Constant 4.877915 1.021533 <0.0001 
After One Fire -0.176369 0.019336 <0.0001 
After Two Fires -0.109692 0.024262 <0.0001 
Days Since Most Recent Fire 0.000032 0.000011 0.0020 
Square Feet 0.000310 0.000011 <0.0001 
Year Built 0.003531 0.000536 <0.0001 
No High School Degree -0.006190 0.000640 <0.0001 
Median Household Income 0.000000 0.000000 0.1348 
Elevation (meters) -0.000303 0.000048 <0.0001 
Trend 0.000018 0.000007 0.0053 
lambda 0.740751 0.045747 <0.0001 

Because the SEM model does not suffer from bias, we also compare our results from the SEM 
model to simple OLS.  OLS predicts a $11,896 larger price drop relative to the SEM with 
distance based weights. 9   

To calculate the total benefits of fire reduction, we need to consider the study area.  We 
have approximately 54,000 single family residences in our study area. The difference in benefits 
from the two spatial models of reducing a first forest fire to 54,000 single-family residences 
amounts to a capital value or present value of over $300 million.  Annualizing the $300 million 
difference in capital value at 5 percent to make it equivalent to annual fire-fighting budgets 
yields $15 million a year. When small differences in estimated coefficients may result in large 
differences in total benefits, it is vital to the researcher to properly specify the spatial weights and 
the spatial specification.  

8. SUMMARY AND CONCLUSIONS 
In this paper we address an important issue in spatial hedonic property models—how to 

simultaneously choose the spatial weights and corresponding spatial model specification. To 
provide one answer to this question we adapted Bayesian estimation techniques to inform choice 
of spatial weights matrix in a hedonic property model.  Bayesian techniques can provide 
statistical evidence regarding the simultaneous choice of spatial model specification and spatial 
weights matrices in spatial econometrics, while more commonly applied ML techniques do not 
allow non-nested model comparison. Given our data, with improper model specification and 
weights matrix, estimated implicit prices were found to vary by 5 percent. While this is not a 
large difference in implicit prices with our small impact radius of 1.75 miles, with a larger 
impact area associated with wide reaching environmental effect, choice of spatial weights might 
have a larger impact on implicit prices.  Nonetheless, from our empirical analysis it is evident 
that both the choice of the spatial model and spatial weights matrix does affect the magnitude of 
the estimated implicit prices. Having a statistical method that can endogenously and 
simultaneously determine both the spatial weights and spatial model is a useful advance in 

                                                 
9 Detailed OLS results are available from the authors upon request.  
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conducting spatial econometric estimation of hedonic property models and their corresponding 
implicit prices used in benefit-cost analysis. 
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