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Abstract:  Spatial regression methodology has been around for most of the 50 years (1961-2011) that the Southern 
Regional Science Association has been in existence. Cliff and Ord (1969) devised a parsimonious specification for 
the structure of spatial dependence among observations that could be used to empirically model spatial 
interdependence. Later work (Cliff and Ord, 1973, 1981; Ord, 1975) further developed these ideas into basic spatial 
regression models, which were popularized and augmented by Anselin (1988). We discuss several issues that have 
arisen in recent work that attempts to extend basic models of spatial interdependence to include more types of spatial 
and non-spatial interdependencies. Understanding these issues should help future work avoid several pitfalls that 
plague current and past attempts at extensions along these lines. 
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1.  INTRODUCTION 
Many of the problematical attempts to extend basic spatial regression models to include 

more elaborate structures of dependence result from a lack of complete understanding of basic 
spatial regression. Section 1.1 outlines basic spatial regression models that are in wide use, while 
section 1.2 discusses a frequently proposed extension of the basic model. Sections 1.3 to 1.6 set 
forth four pitfalls that beset the proposed extension from section 1.2 that have not been widely 
recognized in the literature. These appear to stem from key facets of basic spatial regression 
models that are misunderstood. 

Section 2 turns attention to alternative approaches to extending the basic model. These 
include more local structures of dependence that avoid the pitfalls discussed in sections 1.3 to 
1.6. 

1.1.  Basic spatial regression models 

The most frequently used basic spatial regression models fall into two broad categories, 
those that model spatial dependence in the disturbances and those that treat dependence in the 
dependent variable. Expression (1) shows a simple specification for dependence in the 
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disturbances and (2) a simple model for dependence in the dependent variable vector 
observations. 
(1) = , = ρ+y Xβ u u Wu + ε    
(2) ρy = Wy + Xβ+ ε    

In both models, the 1×n vector y  represents a dependent variable that exhibits variation 
across spatial observational units, and the kn ×  matrix X  represents explanatory variables that 
usually include a vector of ones. The scalar parameter ρ  measures the strength of spatial 
dependence with boundaries on the permissible (stationary) parameter space determined by 
minimum and maximum eigenvalues of the nn×  matrix W. For simplicity, we assume that W 
has all real eigenvalues and that the principal eigenvalue equals 1. The matrix W provides a 
(normalized) structure of connectivity between the observations and in spatial regression models 
each observation is a region. In a spatial context, connectivity might be defined as neighboring 
regions using non-zero elements in the ji, th position of the matrix W to denote that region j  is 
a neighbor to region i . The 1×n vector ε  is a disturbance term usually assumed to be normally 
distributed with zero mean, constant variance 2σ and zero covariance across observations. 

The parameters of the model are ,ρβ and 2σ which can be estimated using maximum 
likelihood, Bayesian or instrumental variable methods (see LeSage and Pace, 2009 for details). 

The concept of spatial neighbors used to form the matrix W might be defined using: 
first-order contiguity (regions with borders that touch), or some number m  of nearest 
neighboring regions based on distances. One could also define a distance cut-off of q  miles and 
select all im  regions within this distance to each region = 1, ,i n…  as neighboring 
regions/observations. It is also possible to rely on inverse distances between all 
regions/observations or some other function of distance with a parameter reflecting a distance 
decay factor. This has computational and statistical disadvantages for problems involving a large 
number of regions/observations, since it results in non-sparse weight matrices W because all 
elements of the matrix W take non-zero values. Statistically, the reliance on neighbors should 
not be a function of the number of observations. Put another way, in a small town it seems 
reasonable to assume that every property depends on every other property, but for the country as 
a whole it seems unappealing to say that properties in Fairbanks, Alaska materially depend on 
properties in Miami. 

1.2.  A frequently proposed extension to the basic spatial regression model 

A frequently proposed extension of the basic spatial SAR model in  (2) is based on 
adding additional connectivity matrices, which for the case of a single additional weight matrix 
leads to the model in (3) (see Lacombe 2004, Badinger and Egger, 2011, Elhorst, Lacombe and 
Piras, 2012). 

(3) 1 2ρ ρ1 2y = W y + W y + Xβ+ ε  

There are two motivations given for extending the simple model from (2) using the 
specification in (3) . One is that additional weight matrices can capture more elaborate types of 
non-spatial dependence. For example, Badinger and Egger (2011) label these ``alternative modes 
of interdependence,'' and cite as an example Case et al. (1993) who use regional differences in 
per-capita income to form a matrix W. 
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A second motivation given for extending the simple model to include additional spatial 
weight matrices is the mistaken belief that model marginal effect estimates and inferences are 
extremely sensitive to the spatial weight matrix used in basic spatial regression models. This 
belief arises since parameter estimates do change across different specifications of W and 
including additional spatial weight matrices often improves model fit. However, it is well-known 
in other areas of econometrics that differences in parameter estimates and model fit across 
models do not necessarily lead to materially different marginal effects in large samples. For 
example, Wooldridge (2005) shows for probit models that omitted heterogeneity (reduction of 
model fit) does not materially affect the average marginal effect even though it creates an 
attenuation bias in the parameter estimates. As another example, logit and probit models often 
have similar marginal effects even though their parameter estimates have different magnitudes. 
Therefore, it does not necessarily follow that marginal effect estimates and inferences are 
sensitive to small improvements in W. 

We explore these two motivations for the SAR model specification in (3) that includes an 
additional weight matrix in the context of four pitfalls that arise for this model specification in 
the next four sections. 

1.3. Pitfall #1: understanding spatial spillovers 
There are important distinctions between the spatial error model (SEM) in (1) and the 

spatial autoregressive model (SAR) in (2) , since the former does not allow for spatial spillovers. 
LeSage and Pace (2009) define spatial spillovers as non-zero cross-partial derivatives ij xy ∂∂ / , so 
that changes to explanatory variables in region i  impact the dependent variable values in region 

ij ≠ . 

For the SEM model the cross-partial derivatives in (5) (spillovers) are zero by design, as 
in the case of non-spatial regression models. The SEM model estimate ˆ

rβ  (and associated 
measure of dispersion) form the basis for inference regarding how changes in the r th 
explanatory variable in region i  will impact the i th region values of the dependent variable, and 
this scalar estimate averages over all ni ,1,= …  observations. In other words the SEM parameter 
estimate equals the average marginal effect of the own variable (average direct effect) and the 
average marginal effect of the spillovers is 0 (average indirect effect is 0). 

(4) / =r
i i ry x∂ ∂ β    

(5) 0=/ r
ij xy ∂∂    

In contrast to the SEM, the SAR model allows for non-zero cross-partial derivatives 
(spillovers) which should frequently be of interest to regional scientists. A literal interpretation of 
the cross-sectional SAR model would be that spillovers arise simultaneously. Since there is no 
explicit role for time in a cross-sectional setting, LeSage and Pace (2009) argue that spillovers in 
the context of spatial regression models should be interpreted as changes that will arise in the 
dependent variable (as a result of changes in the explanatory variables) as the relationship under 
study moves to a new steady-state equilibrium. Cross-sectional observations could be viewed as 
reflecting a slice at one point in time of a long-run steady-state equilibrium relationship, and 
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comparative static analysis of changes then represent new steady-state relationships that would 
arise over time. 

The ultimate goal of estimating spatial regression model parameters is inference 
regarding how changes in the explanatory variables impact the dependent variable which appears 
in (6) and  (7) for the SAR models. We use ijS  in (6) and (7) to represent the ji, th element of 
the nn×  matrix S shown in (8) . 

(6) / =r
i i ii ry x∂ ∂ S β    

(7) / =r
j i ij ry x∂ ∂ S β    

(8) 
1= ( )n ρ −−S I W    

In the case of spillovers such as the SAR model, changes in the r th explanatory variable 
in region i  will impact the i th region values of the dependent variable as shown in (6) , as well 
as other regions j  as shown in (7) , leading to an 1×n  vector of potential responses. Since we 
can change each of the ni ,1,= …  regions’ r th explanatory variable values, this results in an 

nn×  matrix of own- and cross-partial derivatives. LeSage and Pace (2009) propose using the 
average of the main diagonal elements of the nn×  matrix representing the own-partial 
derivatives as a scalar summary measure of direct effects estimates and the average of the 
cumulative sum of the off-diagonal elements (reflecting cross-partial derivatives) from each row 
as a scalar summary of indirect effects estimates or spillovers. 

There are a great many studies employing SAR models (and other models involving 
spatial lags of the dependent variable, Wy ) that misinterpret the coefficient estimates for the 
parameters β  as if they represent partial derivatives showing how changes in the explanatory 
variables impact the dependent variable. This accompanies the belief that we only need to be 
able to estimate the model parameters 2, ,ρβ σ and our modeling experience is complete. In this 
line of thinking, inference regarding the influence of the explanatory variables on the dependent 
variable is a trivial exercise comparable to that in non-spatial regression, since all that is needed 
for inference are estimates of the parameters β (and associated measures of dispersion). The 
argument is that estimation methods can produce 2, ,ρβ σ estimates for models involving more 
than a single weight matrix, so extensions of the basic model are quite simple. This is often cited 
as an area where GMM estimation holds advantages over maximum likelihood, but this ignores 
the fact that Maximum Likelihood and Bayesian Markov Chain Monte Carlo (MCMC) 
(likelihood-based methods) can easily produce estimates for the parameters 2

1 2, , ,ρ ρβ σ  for 
models involving more than a single weight matrix.1 

In fact, contrary to popular belief, drawing inferences about direct and indirect effects 
that can be separably attributed to more than a single type of connectivity is a major pitfall to 
extending basic spatial regression models in this direction. Specifically, for the specification in 
(3) we have an nn×  matrix of partial derivatives taking the form in (9) . 

                                                 
1Pace and LeSage (2002) proposed a semiparameteric model for spatial dependence in the dependent variable that involved a 
large number of simpler weight matrices (termed spatial basis matrices). They illustrated their proposed method using 
approximate maximum likelihood estimation of a model based on a large sample of 57,647 U.S. census tracts. 
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(9) 
1

1 1 2 2/ = ( )r'
n ry x ρ ρ −∂ ∂ − −I W W β    

This should make it clear that the main diagonal elements (reflecting direct effects/own-
partials) and off-diagonal elements (reflecting indirect effects/cross-partials) of the nn×  matrix 
inverse involve elements of both 1W  and 2W  reflecting a combination of the two types of 
dependence being modeled. An implication is that it is not possible to easily separate out 
alternative transmission channels of spillovers associated with 1W  and 2W  types of connectivity. 
This should raise important concerns about the wisdom of pursuing models with a specification 
such as that in (3), and it suggests that portrayals of these extended models as straightforward 
and easy-to-understand extensions of the basic model are not accurate. 

1.4. Pitfall #2: sensitivity to the weight matrix 

A second motivation given for extending the simple model to include additional weight 
matrices is the mistaken belief that model marginal effect estimates and inferences are extremely 
sensitive to the weight matrix used in basic spatial regression models. Although including 
additional weight matrices may yield a closer approximation to the correct/true but unknown 
weight matrix, it does not necessarily follow that the marginal effects are sensitive to small 
changes in W. 

LeSage and Pace (2011) label the belief that spatial regression marginal effect estimates 
and inferences are sensitive to particular choices made regarding the matrix W as the biggest 
myth in spatial econometrics. They show that contrary to popular belief, marginal effect 
estimates and inferences regarding how changes in the explanatory variables in these models 
impact the dependent variable are not overly sensitive to alternative approaches to specifying the 
matrix W in spatial settings. The basic reasoning is that the correlation between various spatial 
lags of y  will usually be high in a spatial setting, and therefore the additional information 
content from introducing additional lags is small. However, what about a non-spatial lag? Do 
these results still hold true? Are there additional issues that arise when using non-spatial W? 

Consider the case of 1W  being a spatial weight matrix and 2W  being based on some 
other variable vector that we label z . Examples might be: income, age, educational attainment, 
employment, rental rates, or house prices. Pace, LeSage and Zhu (2011) show that the spatial 
dependence parameter estimates from a model: ρz = α + Wz + ε for all of these variables ranges 
from a low of 0.75 to a high of 0.96, for samples of counties, census tracts and block groups. 
This suggests a high degree of spatial clustering in these variables, and the point made by Pace, 
LeSage and Zhu (2011) is that most explanatory variables used in spatial regression models 
exhibit a high degree of spatial dependence. 

This leads to the question ─ what new information is added to the model by inclusion of 
supposedly non-spatial 2W y  as an explanatory variable? As an example, consider expressing the 
inverse using the series expansion:  

1 2=0
( )t

t
ρ ρ∞

+∑ 1 2W W . 

The first order ( 1=t ) term is straightforward. The second order term ( 2=t ) contains, among 
others, the quantities 2

1W  and 2
2W . For symmetric 1W , 2W the diagonal elements of 2

1W  and 
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2
2W equal the sum of squared elements from the respective rows. Thus both 2

1W  and 2
2W  have 

large elements on the diagonals meaning these may exhibit substantial covariation, even when 
there is no relation between 1W  and 2W . 

A related complication that arises from use of non-spatial matrices 2W  is whether we can 
treat the matrix 2W  as exogenous. As already noted, the own- and cross-partial derivatives used 
to interpret the SAR model involve the matrix W, specifically: 1/ = ( )r'

n ry x ρ −∂ ∂ −I W β , where 
only rx  is changed, not elements in the matrix W. Of course, treating the spatial configuration 
of the n  regions as fixed, while changing an explanatory variable rx  is conceptually realistic. 
Can we say the same thing about changes in explanatory variables that may be highly correlated 
with non-spatial variables used to construct a non-spatial connectivity matrix 2W ? For example, 
Kelejian and Mukerji (2011) rely on trade flows between countries as the basis for constructing a 
non-spatial weight matrix used in a model where one of the explanatory variables is the 
exchange rate. Can we truly view this type of weight matrix as exogenous in the face of changes 
in an explanatory variable such as the exchange rate? Consider that an important point about the 
structure of spatial connectivity between regions is that this tends to remain very constant over 
time. Can the same be said about trade flows used to construct a non-spatial weight matrix and 
the exchange rate? 

Another example is Badinger and Egger (2010), who consider spillover effects on US 
foreign affiliate sales in OECD countries based on a model including two non-spatial 
connectivity matrices. One is constructed based on horizontal interdependence measured using 
bilateral final goods trade flows and the other reflecting vertical interdependence based on 
bilateral trade in intermediate goods. Choice of non-spatial connectivity structures such as trade 
or migration flows between regions that change over time would of course lead to estimates and 
inferences that may be sensitive to the choice of weight matrices, or estimates and inferences that 
vary over time. 

Blankmeyer et al. (2010) address some additional issues that arise for non-spatial weight 
matrices in the context of constructing a set of peer nursing homes for a sample of around 1,000 
nursing homes, all located in the state of Texas. They ignore spatial location entirely and focus 
on univariate or multivariate criteria of institutional similarity, such as the number of beds, size 
of the nursing staff, square foot area of the facility, payroll, etc. They note that conventional 
measures of univariate or multivariate distance (e.g. Euclidean or Mahalanobis distance) can be 
calculated and used to identify peer institutions to each observation as those that are most 
similar, that is, those that exhibit smaller distances constructed using the similarity criterion. The 
result is an nn×  matrix of (generalized) distances between each of the n  observations and all 
others. To define peer groups each having m  institutions, they select the m  nearest neighbors as 
the m  most similar institutions. 

While it is possible to calculate generalized distances between two vectors, say the 
number of beds and payroll, scaling becomes very important. To see this, consider that payroll 
might be expressed in dollar values leading to large magnitudes in the millions. This variable 
would have unequal weight relative to the number of beds. This is unlike the case of spatial 
proximity, where Euclidean distance calculated based on latitude-longitude provides a natural 
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scaling. There is also a need to take into account covariance between the two variable vectors 
reflecting the number of beds and payroll of the nursing home that does not arise in the case of 
geographical space. The scaling problem becomes exponentially worse in the case of 
multivariate dimensions. 

Pace, Sirmans, and Slawson (2002) studied adapting the spatial error model to reflect real 
estate appraisal practice. Comparable properties in real estate appraisal play the role of 
neighbors. Appraisal practice usually avoids using comparable properties where the number of 
bedrooms differs by more than 1 from the subject property (observation). Pace, Sirmans, and 
Slawson (2002) used this restriction, another similar restriction on bathrooms, and some 
restrictions based on age and housing size to estimate a multidimensional W beginning with a 
spatial W and zeroing out elements based on whether they violated the restrictions. Their 
estimate for the effects of house size was not materially different than the estimate based on a 
purely spatial W. However, house size was part of W and also part of the model. It should be 
clear that this approach greatly increases the difficulty of interpreting partial derivative changes 
that arise from changes in house size on the dependent variable. 

1.5.  Pitfall #3: stationary regions for the parameter space in models involving multiple 
weight matrices 

For the case of the basic spatial regression models in (1) and (2), it is well known that 
minimum and maximum eigenvalues of the weight matrix W determine the feasible range for 
the parameter ρ  (see LeSage and Pace, 2009 for details). For two W, Lee and Liu (2010) rely 
on the sufficient condition that the sum of the absolute values of the two spatial parameters 
should be less than one 1)|<||(| 21 ρρ + . This condition can also work for additional W 
matrices. However, the more W matrices used, the more likely that some of the estimated 
dependence parameters will lie on or very near the boundary of the parameter space. However, 
using multiple W matrices creates some computational and inferential issues since the parameter 
space is restricted and estimation methods such as maximum likelihood and GMM require 
estimates to lie sufficiently within the interior of the parameter space to carry out conventional 
inference.2 To the degree that the estimation of the individual ρ  parameters becomes less 
precise, this imprecision means that the parameter estimates could fall outside the feasible region 
in repeated sampling and thus invalidate the asymptotics used in conventional inference. In other 
words, using more W matrices increases the number of boundaries and may increase the 
imprecision of estimation which reduces the chance that the parameter estimates will fall in the 
interior of the boundaries in repeated sampling, a requirement underlying conventional inference. 

The simplest approach to this problem would be to impose such restrictions during 
Bayesian MCMC estimation where samples are drawn (using a Metropolis-Hastings (M-H) 
procedure) from the conditional distribution for parameter 1ρ  given all other parameters 
(including 2ρ ), and samples from the conditional distribution for parameter 2ρ  given all other 
parameters (including 1ρ ). The feasible range for 1ρ  given 2ρ  is easy to calculate, and M-H 
candidate draws that lie outside the feasible range can simply be rejected, a method known as 
                                                 
2One could perhaps reduce this problem by going to the more permissive regions proposed by Elhorst, Lacombe and Piras 
(2012). However, this more permissive region does not cure the possible parameter estimate on the boundary problem and this 
approach becomes very complicated when using multiple W  matrices. 
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rejection sampling. A similar statement applies to the M-H process for constructing draws for the 
parameter 2ρ  conditional on (given) 1ρ  values. Note, the Bayesian MCMC approach would 
allow for correct inference of the marginal effects even in the presence of these restrictions. 

1.6.  Pitfall #4: the correct specification for models involving multiple weight matrices 
The model specification in (3) seems to be widely viewed as a natural extension of the 

basic spatial lag (SAR) model, but there are other competing specifications that could be 
employed. One alternative is the specification in (10), which can be viewed as filtering the 
dependent variable vector y  for two types of dependence, one involving 1W  and the other 2W . 
This leads to the model statement in (11), where we see a matrix product 1 2W W  involving the 
two types of dependence that is a logical result of this type of specification. 

(10) ρ ρn 1 1 n 2 2(I - W )(I - W )y = Xβ+ε    
(11) ρ ρ ρ ρ1 1 2 2 1 2 1 2y = W y + W y - W W y + Xβ+ ε    

(12) -1 -1y = S Xβ+S ε    
       ρ ρn 1 1 n 2 2S = [(I - W )(I - W )]  

For ease of exposition, let us denote A= ρn 1 1(I - W )  and B= ρn 2 2(I - W )  and S = AB .  
The reduced form of the model is shown in (12), where we note the matrix algebra rules: 

=-1 -1 -1(AB) B A  and ρ ρ-1 2 2
n 1 1 1 1A = I + W + W +…, while ρ ρ-1 2 2

n 2 2 2 2B = I + W + W +…, where 
the expressions for ,-1 -1A B  are infinite series. This suggests that numerous cross-product terms 
would arise involving , ,2

1 2 1 2W W W W …  and , ,2
2 1 2 1W W W W … in the reduced form inverse 

expression. We also note that in general ≠1 2 2 1W W W W .  

How does this specification compare to that in (3) ? One can view the specification in (3) 
as a special case of this specification that arises only when the matrix products: = n n×1 2W W 0 , 
and = n n×2 1W W 0 , as well as all other matrix cross-products involving higher-order powers of 

, = 0, =1, =1, = 2, , = 2, =1, = 2, ,s t t s t ts t
1 2W W … …  etc. 

An important point to note is that the order in which we enter the matrices ,1 2W W  in the 
model matters, since in general ≠1 2 2 1W W W W . This means that changing the order in which we 
filter for the two types of dependence embodied in ,1 2W W  would lead to different coefficient 
estimates. Again, the upshot of this is that the model specification in (3) has another implicit 
assumption that the matrix products: =1 2 2 1W W W W , as does the more general specification in  
(10). It should be clear to see that extension to cases involving more than two W-matrices would 
rapidly become complicated. 

Another implication of these results is that interpretation of separate spillover impacts 
from the two types of connectivity embodied in the more general models would be very difficult. 
These are shown in (13) using the nn×  matrix of own- and cross-partial derivatives that would 
be used to calculate direct and indirect effects. 
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(13) / =r'y x∂ ∂ -1
rS β  
      -1 -1 -1S = B A     

(14) ρ ρ ρ ρ2 2 2 2
n 2 2 2 2 n 1 1 1 1= (I + W + W +…)(I + W + W +…)    

For the restrictive case where the order of 1W  and 2W  were known apriori, one could 
interpret these effects estimates in the following way.3 Assuming that 2W  represents a spatial 
weight matrix and 1W  technological connectivity between regions, the total effects of 
technological connectivity (direct plus spillovers) arising from a change in the r th variable are 
embodied in the matrix -1

rA β . The global spatial spillovers matrix -1B  then aggregates total 
technological effects falling on spatially nearby regions ( W ), neighbors to these regions ( 2W ), 
neighbors to the neighbors ( 3W ) and so on (see LeSage and Fischer, 2012). 

1.7.  Conclusions regarding simple extensions of the basic spatial model 
The belief expressed in the literature that extending the basic single spatial weight matrix 

model using the specification in (3) is relatively straightforward is naive. It overlooks four 
important pitfalls that arise. The pitfall related to technical issues regarding the feasible 
parameter space could be resolved using Bayesian MCMC estimation of the model, but those 
pertaining to interpretation of separable spillovers for additional types of connectivity introduced 
using the specification in (3) are more challenging. 

Two motivations for extension of the basic SAR spatial regression model along the lines 
of  (3) given in the literature seem to be naïve as well. One motivation is based on the mistaken 
belief that marginal effect estimates and inferences are sensitive to use of the correct spatial 
weight matrix, and the other assumes that spillovers associated with additional connectivity 
structures introduced using the specification (3) can be separately analyzed. 

Issues relating to what is the appropriate specification to use in extending the basic SAR 
spatial regression raised in section 1.6 may explain why the complicated feasible parameter 
space arises for the specification in (3) . If this specification imposes some arbitrary restrictions 
regarding covariances (cross-products) between multiple types of connectivity structures, these 
restrictions could account for the non-linear relationship between feasible values for the 
dependence parameters. 

Finally, the desire to consider non-spatial types of connectivity must be tempered by a 
realization that a host of technical issues arise with regard to how one proceeds to specify non-
spatial connectivity relationships. Spatial connectivity relations specified in the way set forth by 
Cliff and Ord (1969) hold a great many of advantages that do not carry over to generalized 
measures of distance between regions. 
 
2.  APPROACHES THAT AVOID THE PITFALLS 

One misunderstanding about basic spatial regression models appears to be a lack of 
understanding about the distinction between local versus global spillovers (Anselin, 2003). An 

                                                 
3Recall that order of the matrices 

1 2,W W  makes a difference in the magnitude of the effects estimates. 
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attractive motivation for use of spatial regression models by regional scientists is their ability to 
provide quantitative estimates of the magnitude of these two types of spillovers. 

Global spillovers are those arising from spatial lags that lead to reduced form expressions 
involving: ρ ρ ρ-1 2 2

n n(I - W) = I + W + W +… , which allow for spillovers to neighbors, neighbors 
to neighbors, and so on, which can emanate out to very high-order neighbors (more distant 
regions). In contrast, local spillovers are those associated with immediate neighbors that do not 
exert influence on higher-order neighboring observations. 

This section discusses model specifications that produce local spatial spillovers 
associated with explanatory variables in the model that are separable, which have been generally 
overlooked in the spatial econometrics literature. It is argued that in many applications interest 
should perhaps focus on how local spillovers arise from changes in the explanatory variables. 

In terms of local models, LeSage and Pace (2009) examine spatially lagged explanatory 
variables (SLX) and spatial Durbin error models (SDEM). These models might avoid pitfalls that 
arise with naïve approaches to extending models to include more than a single weight matrix. 
The SLX model is shown in (15) and the SDEM model in (16), where spatial lags of the 
explanatory variables are included in both models, but no spatial lag of the dependent variable. 

(15) y = Xβ+ WXθ+ ε    
(16) y = Xβ+ WXθ+ u    

     ρu = Vu + ε  

The SLX model allows for local spatial spillovers which can be directly calculated using 
the coefficients θ  since: 

(17) / = ( )r'
ry x∂ ∂ n rI β + Wθ    

 The average of the main diagonal elements of the nn×  matrix ( )n r rI β + Wθ  reflects the 
direct effects, while the cumulative indirect effects can be constructed using an average of the 
(cumulated) off-diagonal elements. Further noting that the main diagonal of the matrix W  
contains zeros, (so regions cannot be neighbors to themselves) and the rows of the matrix W  
sum to one, leads to the simple conclusion that the coefficient rβ  reflects direct effects while rθ  
captures spatial spillovers. The SDEM model allows for these same local spillovers with regard 
to the explanatory variables, but also models global spatial dependence in the disturbance 
structure of the model, using the spatial autoregressive process ρu = Wu + ε . 

For the SDEM and SLX models, the coefficients in the vector  θ  represent spillovers that 
impact the immediately neighboring observations. We note that estimates from these two models 
should be similar, but in the face of spatial dependence in the disturbances, SDEM model 
estimates should be more efficient. The partial derivative expressions for both models are the 
same, but improved efficiency for the case of the SDEM model could impact inferences 
regarding significance of the direct and indirect effects estimates. Pace and LeSage (2008) 
provide a Hausman test that could be used to test for equality of the SLX and SDEM model 
coefficients. An absence of equality for these two sets of coefficients may provide evidence 
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against the SDEM model in favor of a spatial lag variant such as the SAR or SDM models (see 
LeSage and Pace, 2009). 

In many cases local spillovers are actually the focus of interest, a point that has often 
been misunderstood in the spatial econometrics literature. For example, Lacombe (2004) uses the 
model specification in (3), where 1W  represents neighboring counties within the state and 2W  is 
constructed using neighboring counties across the state border. His sample data consists only of 
border counties and interest centers on the effects of state-level variation in Aid to Families with 
Dependent Children (AFDC) and Food Stamp program benefit levels on female labor force 
participation. Changes in benefit levels of these two state administered aid programs for low-
income residents could have a spillover impact on counties in neighboring states, since it is 
possible for residents of border counties to simply move to neighboring states if there is a large 
discrepancy in aid benefits between neighboring states. This would seem to be a case where local 
spillovers should be the focus of interest. Use of the variant of the SLX model in (18) would 
allow interpreting the coefficient rθ associated with say AFDC benefit levels in the model, as a 
measure of how changes in state-level AFDC benefits (on average over the sample of border 
counties) impact own-state female labor market participation (direct effects). This is because 
there is no difference in own-county and own-state benefit levels associated with these state 
administered programs. 

(18) 1 2y = Xβ+ W Xθ+ W Xγ + ε    

The estimate rγ  would measure the impact of changes in AFDC benefit levels in 
neighboring states on border counties female labor force participation, reflecting the spillover 
impact from changes in the neighboring state AFDC benefit levels on labor force participation, 
again averaged over all border counties in the sample. An important point is that the SLX/SDEM 
model specification does allow separation of the two types of spillover impacts, which we 
showed was very difficult for the model specification in (3) . 

Would we really expect that changes in state-level AFDC and Food Stamp aid would lead 
to global spillovers? If so, changes in aid levels in Ohio could impact labor force participation in 
states neighboring Ohio, neighbors to the Ohio neighbors, neighbors to those neighbors, and so 
on. The implication is that changes in aid levels in Ohio would exert an impact on female labor 
market participation in states as distant as Maine and California. 

An example that uses the SDEM model is LeSage and Ha (2012), who study the impact 
of migration on county-level social capital. Their SDEM model takes the form in (19) , where 

nW  and fW  represent migration-weighted spatial weight matrices. The matrix nW  identifies 
neighboring counties within 40 miles and assigns relative weights to these based on in-migration 
magnitudes. The matrix fW  identifies neighboring counties more than 40 miles away from each 
county that provide in-migration to each county i  in the sample, and weights these according to 
in-migration magnitudes. The matrix V  used to model dependence in the model disturbances 
was a spatial contiguity weight matrix, with equal weights assigned to all contiguous counties. 

(19) ,n fy = Xβ+ W Xθ+ W Xγ+u     = ρu Vu + ε  
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Pace and Zhu (2012) point out that a desirable aspect of the model in (19) is that 
dependence in the disturbances is modeled separately from spillovers, which is not the case for 
the extended variant of the SAR model. For the basic spatial SAR model, the dependence 
structure for the disturbances is restricted to be the same as that for the mean model, which can 
be seen from: ρ ρ-1 -1

n ny = (I - W) Xβ + (I - W) ε . This implies that the expectation for y  is a 
function of ρ  and W, ρ -1

nE(y) = (I - W) Xβ , and the disturbance covariance 
ρ ρ ′2 -1 -1

n nΩ = σ [(I - W) (I - W ) ]  takes the same functional form. Of course, the specification in (3) 
is even more restrictive in this regard, forcing the mean part of the model and disturbance 
covariance to take a more restrictive form involving two weight matrices and two spatial 
dependence parameters. Misspecification in one part of the model will then contaminate the 
other aspect of the model specification. 

The SDEM model in (19) allows separation of the (local) spillover impacts on county-
level social capital levels arising from changes in population characteristics of nearby counties 
(providing in-migrants to each county in the sample) versus that arising from changes in 
population characteristics of far away (outside the region) counties (providing in-migrants to 
each county). For example, how do changes in educational attainment levels of population in 
counties within the region versus counties outside the region (providing in-migrants to each 
county) impact levels of social capital in the typical county? Are there important differences in 
the magnitude of impact associated with in-migration from within and outside the region? Are 
some changes in characteristics of in-migrants from nearby counties significant/insignificant 
while the same characteristics of in-migrants from outside the region are 
insignificant/significant? 

By way of conclusion, we note that although the term local spillovers could be used to 
characterize the model in (19), this does not necessarily rule out consideration of spillover 
impacts involving great distances, since practitioners can try variants of individual W with 
different bandwidths to capture longer range dependencies. Therefore, practitioners of spatial 
regression models should spend time thinking about whether the phenomena being modeled are 
likely to produce local or global spillovers. 

3.  CONCLUSION 
We point out four pitfalls associated with a popular but perhaps naïve extension of the 

basic single weight matrix spatal model specification to the case of more than one weight matrix, 
which has been frequently utilized in the spatial econometrics literature. These pitfalls appear to 
arise from some fundamental misconceptions regarding estimation and interpretation of the basic 
SAR spatial regression model. We also argue that two motivations given for the extended spatial 
regression appear to arise from an equally simplistic view of spatial regression models. 

Extending single weight matrix models to include more than spatial connectivity 
relationships opens up a host of issues, some pertaining to estimation, and many more to how we 
interpret resulting estimates from these extended models to draw inferences. Past applications of 
models containing multiple weight matrices that can be found in the literature have not generally 
given careful consideration to these issues. 



LESAGE & PACE: PITFALLS IN HIGHER ORDER MODEL SPATIAL REGRESSION MODELS  25 
 
 
 

© Southern Regional Science Association 2012. 
 

We raise some questions about whether the motivations given for extending basic spatial 
models to include more than a single weight matrix are well thought-out, or if they perhaps arise 
from confusion regarding how we should model spillovers. If substantive interest in spillovers 
requires a separation of the magnitude and channels of impact associated with multiple types of 
connectivity between regions, only model specifications that focus on local spillovers allow 
clear-cut separation. Global spillovers are almost by definition not separable, since higher-order 
interactions in geographical space lead to an overlap in nearby and distant spillovers. When 
considering spatial and non-spatial types of connectivity between regions, additional issues arise 
regarding covariance between these different types of connectivity, that have for the most part 
been ignored in the applied literature. 

Past work in spatial econometrics has lead to a great deal of progress regarding 
estimation of the parameters in a host of different types of useful spatial econometric model 
relationships. These include models for: spatially dependent origin-destination flows, space-time 
panel relationships, spatial Tobit and probit relations and models with endogenous explanatory 
variables. Future work in spatial econometrics needs to turn attention to how these estimates can 
be used to draw proper inferences regarding the relationships we are modeling. This should, after 
all, be the ultimate goal of estimating regional science relationships using spatial econometric 
models. The thesis of this article is that past work on extending basic spatial regression models 
has placed too much emphasis on estimation of the parameters while ignoring how to properly 
view the resulting estimates. 
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