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Abstract:  In spatial discrete choice models the spatial dependent structure adds complexity in the estimation of 
parameters. Appropriate general method of moments (GMM) estimation needs inverses of n-by-n matrices and an 
optimization complexity of the moment conditions for moderate to large samples makes practical applications more 
difficult. Recently, Klier and McMillen (2008) have proposed a linearized version of the GMM estimator that avoids 
the infeasible problem of inverting n-by-n matrices when employing large samples. They show that standard GMM 
reduces to a nonlinear two-stage least squares problem. On the other hand, when we deal with full maximum 
likelihood (FML) estimation, a multidimensional integration problem arises and a viable computational solution 
needs to be found. Although it remains somewhat computationally burdensome, since the inverses of matrices 
dimensioned by the number of observations have to be computed, the ML estimator yields the potential advantage of 
efficiency. Therefore, through Monte Carlo experiments we compare GMM-based approaches with ML estimation 
in terms of their computation times and statistical properties. Furthermore, a comparison in terms of the marginal 
effects also is included. Finally, we recommend an algorithm based on sparse matrices that enables more efficient 
use of both ML and GMM estimators. 
Keywords: spatial econometrics, binary probit model, maximum likelihood, GMM, Monte Carlo simulations 
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1. INTRODUCTION 

When we specify a spatial autoregressive probit model we generally derive the maximum 
likelihood function implied by the reduced form of the spatial model. A major problem in 
maximizing the log‐likelihood function implied by the reduced form of the spatial model is 
represented by fact that it repeatedly involves the calculation of determinants of n by n matrices 
(related to the Wn weight matrix) whose dimension depend on the sample size.1 When n is very 
large this operation can be highly demanding even with the current computational power 
(Fleming, 2004; Beron and Vijverberg, 2004). For this purpose some solutions have been 
proposed (Ord, 1975; Griffith, 2000; Smirnov and Anselin, 2001; Pace and LeSage, 2004; Klier 
and McMillen, 2008). The problem is becoming unmanageable in all those regional economic 
studies that involve very large, dense matrices, such as applications that pertain to social 
interactions (Brock and Durlauf, 2007; Goetzke and Andrade, 2010) and that employ microlevel 
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data (Bell and Bockstael, 2000; Bell and Dalton, 2007). Nowadays, overcoming the problem is 
particularly important because it essentially precludes the opportunity of performing large scale 
studies that compare detailed spatial units. Although a multidimensional integration problem 
precludes an analytical solution of the Full Maximum Likelihood (FML) approach and an overly 
heavy computational load can restrain the use of Maximum Simulated Likelihood (MSL) 
estimators, in principle ML methods lead to more-efficient estimates. On the other hand, the 
GMM estimator is simpler to treat, but it suffers from the malady of the ML estimator—even if 
in a reduced measure—of needing to compute the same n-by-n matrices. In a spatial binary 
probit context, a comparison between a type of ML estimator—called Partial MLE (PMLE)—
and the GMM estimator of Pinkse and Slade (1998) has been recently analyzed by Wang, 
Iglesias, and Wooldridge (2013). By contrast, Klier and McMillen (2008) have proposed a 
comparison between that same GMM and their Linearized GMM estimator. However, it seems 
that no literature made an extensive comparison among the relevant estimators in order to 
produce some useful information and give some guidelines that could help researchers to choose 
appropriate estimators in different statistical situations and for different economic purposes. So 
this is a purpose of the present paper. Moreover, it includes extensive results in terms of the 
marginal effects, different spatial weight matrices used, and different matrices of instruments 
specified. 

To explain spatial autoregressive probit models and their main estimation techniques, the 
paper is structured in the following way. Section 2 starts with a brief review of the main classical 
estimation techniques for spatial discrete choice models. It then contains a description of the 
spatial mixed autoregressive-regressive probit model, introducing the multidimensional 
integration problem (Section 3), the maximum likelihood-based estimators (Subsection 3.1), and 
the generalized method of moments-based estimators (Subsection 3.2). Section 4 introduces 
Monte Carlo planning, and Section 5 is a collection of the main statistical and computational 
results based on comparisons between ML and GMM-based approaches (Subsections 5.1 and 
5.2). It also displays model comparisons in terms of the marginal effects, different spatial weight 
matrices, and different matrices of instruments. Section 6 covers interesting results derived by 
using sparse matrices to efficiently estimate spatial discrete choice models with an ML or GMM 
estimator. Section 7 concludes. It should be clarified that, despite the increasing importance of 
Bayesian inference in spatial econometrics (see, e.g., LeSage and Pace, 2009), this paper 
concentrates on frequentist estimation methods. 

2. A SHORT REVIEW OF ESTIMATION TECHNIQUES FOR SPATIAL DISCRETE 
CHOICES MODELS 

In spatial discrete choice models the structure of spatial dependence adds complexity to 
the estimation of parameters (Fleming, 2004). Beron and Vijverberg (2004) performed a set of 
Monte Carlo simulations of a spatial linear probability model and compared them with standard 
and spatial probit models. They found that while the spatial linear probability model is much 
easier and faster to estimate compared to a spatial probit model, it fails to take into account the 
dichotomous nature of the dependent variable and is unable to adequately capture spatial 
dependence. The standard probit model is able to capture the dependent variable’s binary nature, 
but it obviously ignores spatial structure. Thus for modeling dichotomous dependent variables, 
spatial probit models are superior to spatial linear models, which will most probably become 
obsolete as access to spatial probit software becomes more widespread.  
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Pinkse and Slade (1998) proposed a GMM estimator for a spatial error probit model with 
heteroskedasticity by observing that the score vector of the log-likelihood function can be 
viewed as a set of moment conditions. Unfortunately, since parameters are estimated 
simultaneously,2 inverses of n-by-n matrices must be calculated. This means the optimization 
complexity of the moment conditions for moderate-to-large sized samples can become 
intractable. More recently, Klier and McMillen (2008) have proposed a linearized version of 
Pinkse and Slade’s GMM that avoids the problem of inverting the n-by-n matrices. Indeed the 
Klier-McMillen procedure requires no matrix inversions, and needs only standard probit/logit 
estimation associated with a linear two-stage least squares procedure (2SLS) (see Subsection 5.2 
for details). Monte Carlo experiments suggest that the linearized model accurately identifies 
spatial effects as long as ρ<0.5. On the other hand, Klier and McMillen (2008) also acknowledge 
that the primary advantage of maximum likelihood estimation is the potential for efficiency (see 
also Wang, Iglesias, and Wooldridge, 2013).3 The prospect of efficiency may become 
questionable, however, when the true model is incorrectly defined. Finally, although Klier and 
McMillen’s linearized model provides accurate estimates when the spatial coefficient is small, it 
yields higher standard errors compared to those from a standard GMM model. 

Traditionally, spatial models with continuous dependent variables are estimated by 
maximum likelihood (ML) methods (Anselin, 1988; Arbia, 2006). However, they can be 
extremely computationally intensive when dealing with spatial models with discrete or limited 
dependent variables. In fact, under an FML approach, a multidimensional integration problem 
arises, so approximate computational techniques must be introduced.4 In practical cases, the 
likelihood functions associated with spatial autoregressive models cannot be analytically 
maximized due to the high degree of nonlinearity in the parameters, so numerically 
approximated solutions must be found. 

Beron, Murdoch, and Vijverberg (2003) and Beron and Vijverberg (2004) proposed the 
recursive importance sampling (RIS) simulator (a generalization of the GHK simulator first 
suggested by Geweke, 1991), which directly deals with n-dimensional integration. Despite its 
advantages of providing unbiased standard errors of the spatial parameter and of solving directly 
the high-dimensional integration as well accounting for heteroskedasticity, its main drawback 
when compared with other computational techniques was its computational burden (see Fleming, 
2004). For this purpose, Wang, Iglesias, and Wooldridge (2013) proposed a Partial Maximum 
Likelihood Estimation (PMLE) approach through which they trade off efficiency for less 
computational burden. The basic idea was to divide observations into many small groups (i.e., 
clusters) in which adjacent observations belonged to a single group (i.e., pairwise groups), and 
bivariate normal distributions were specified within each group. Correctly specifying the 
conditional joint distribution within groups (i.e., using relatively more information provided 
through spatial correlations), they estimated the model by PMLE, which yields consistent and 

                                                 
2 So-called “simultaneous equation models” are used to estimate all the parameters at the same time because of the endogeneity 
of some regressors in spatial models. In the case of ML estimators, this leads to the use of a Full ML (FML) approach which 
specifies joint probability functions. Due to the simultaneity of these models and the impossibility of observing the latent 
continuous variables, an easy analytical solution is precluded (Anselin, 2002). 
3 Notice that if the normality assumption is correct, semiparametric estimators are less efficient than parametric equivalents. 
4 The class of Maximum Simulated Likelihood (MSL) estimator is typically preferred. 
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asymptotically normal estimators that are more efficient than Pinkse and Slade’s (1998) GMM 
estimator. 

Indeed, Pinkse and Slade (1998) fail to exploit information related to spatial correlations 
among observations. Obviously, PMLE is not as efficient as the Full MLE. However, since 
information from adjacent observations typically captures relevant spatial correlations in the 
sample, PMLE provides a consistent and “relatively” efficient estimator, which avoids 
computational problems at the expense of some efficiency loss. A more detailed discussion of 
estimation techniques in spatial discrete choice models can be found in Smirnov (2010) and in 
Billé and Arbia (2013), who in particular emphasized the discussion on health economics 
applications. 

3. THE SPATIAL AUTOREGRESSIVE-REGRESSIVE PROBIT MODEL 

As we know from the spatial econometrics literature (e.g., Anselin, 1988; Anselin, 
Florax, and Ray, 2004; LeSage and Pace, 2009), we can consider two basic models that 
introduce spatial dependence in the data: the spatial autoregressive lagged dependent variable 
(SAL) model and the spatial autoregressive error (SAE) model. In a probit context, we can 
express the first as: 

∗ܡ                                        (1) ൌ ∗ܡ܅ߩ	 ൅ ઺܆ ൅ ઽ,						ઽ~MVNሺ૙,  ۷ሻ	ઽଶߪ

ܡ ൌ 	۷ሺܡ∗ ൐ ૙ሻ 

where ܡ܅∗ is a column vector of dimension n of spatially lagged unobserved variables with an 
n-by-n spatial weight matrix W, ρ is the spatial autoregressive coefficient, X is an n-by-K matrix 
of regressors including the constant term, β is the corresponding vector of K parameters 
including the intercept, ε is a column vector of dimension n of iid normal error terms, and ܡ is 
the observed binary column vector of the same dimension. Note that the observed vector ܡ is an 
indicator-function vector of the unobserved continuous variables ܡ∗, and therefore probit models 
are generally defined as nonlinear models5 that describe the probability that the ith observed 
dependent variable is equal to 1. The model in (1) with spatial dependence and latent form of the 
continuous variable is known as a spatial autoregressive probit model (SAPM) in a structural 
form (e.g., Fleming, 2004, among others). Under the assumptions that ઽ~MVNሺ૙,  ۷ሻ, all of	ઽଶߪ
the diagonal elements of W are zero, and ߣ௠௜௡

ିଵ ൏ ߩ ൏ ௠௔௫ߣ
ିଵ 6, so the spatial model can be written 

in a reduced form as 

∗ܡ                                 (2) ൌ ሺ۷ െ ઺܆ሻିଵሺ܅ߩ ൅ ઽሻ ൌ ሺ۷ െ ઺܆ሻିଵ܅ߩ ൅  ܝ

where ሺ۷ െ ܝ ,ሻିଵ is the so-called Leontief inverse܅ߩ ൌ ሺ۷ െ ,MVNሺ૙~ܝ ሻିଵઽ and܅ߩ ઱ሻ with 
variance-covariance matrix of the autocorrelated errors Eሺܝܝ′ሻ ൌ ઱ ൌ ሾሺ۷ െ ሻ′ሺ۷܅ߩ െ

                                                 
5 See for example Greene (2003), Verbeek (2004). 
6 These assumptions are necessary to guarantee the existence of the inverse matrix ሺ۷ െ  ሻିଵ, in which case the spatial process܅ߩ
is stationary. In particular, if W is row-normalized, this inverse matrix exist for all ߩ: |ߩ| ൏ 1, since in this case ߣ௠௔௫ିଵ ൌ 1 for 
different sample sizes. We need only to verify that ߣ௠௜௡

ିଵ ൑ െ1 since ߣ௠௜௡
ିଵ  differs for different sample sizes. For details see, e.g., 

Kelejian and Robinson (1995), Kelejian and Prucha (1998), Bell and Bockstael (2000), LeSage and Pace (2009, chap. 4), 
Smirnov (2010). 
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 ఌଶ term is usually normalized to 1 to avoid the identification problem7 of theߪ ఌଶ. Theߪሻሿିଵ܅ߩ
model. Now define ܆∗ ൌ ሺ۷ܖ െ  Since in standard probit models we describe the .܆ሻିଵܖ܅ߩ
probability that ݕ௜ ൌ 1 as Φሺܑܠ

ᇱ઺ሻ, in spatial probit models we can write the same probability as 

(3)            P൫ݕ௜ ൌ ,ܑܠ|1 ௜ܹ௝ݕ௝
∗൯ ൌ P൫y୧

∗ ൒ ,ܑܠ|0 ௜ܹ௝ݕ௝
∗൯ ൌ P൫ܑܠ

∗ᇲ઺ ൅ ௜ݑ ൒ ,ܑܠ|0 ௜ܹ௝ݕ௝
∗൯ ൌ 

                                                 ൌ P൫െݑ௜ ൏ ܑܠ
∗ᇱ઺|ܑܠ, ௜ܹ௝ݕ௝

∗൯ ≅ Φሺܑܠ
∗ᇱ઺ሻwhere 

ܑܠ
∗ ൌ ሺݔ௜ଵ

∗ , ௜ଶݔ
∗ , … , ௜௞ݔ

∗ , … , ௜௄ݔ
∗ ሻ′, u is a column vector of autocorrelated error terms defined as in 

(2), and Φሺ•ሻ is the cdf for normal distributions. Actually, the previous cumulative density 
function does not precisely describe P൫ݕ௜ ൌ ,ܑܠ|1 ௜ܹ௝ݕ௝

∗൯ because spatial dependence introduces 
not only autocorrelation but also heteroskedasticity, which needs to be taken into account. 
Therefore, the probability that ݕ௜ ൌ 1 in a spatial autoregressive-regressive probit model is 

(4)                                               P൫ݕ௜ ൌ ,ܑܠ|1 ௜ܹ௝ݕ௝
∗൯ ൌ Φቀܑܠ

∗ᇲ઺

ఙ೔
ቁ      

where ߪ௜ is the ith standard deviation based on the variance-covariance matrix of u (i.e., ઱). In 
interpreting parameters, the nonlinear nature of the normal cdf, as in the standard probit case, is 
complicated by the fact that changes in the level of a single observation, say ݔ௜௞, have an impact 
on the expected probability of the event analyzed in both own- and other-regions due to spatial 
autocorrelation. Beron and Vijverberg (2004) described the K-by-1 impact vector of changes in 
the regressor vector ܑܠ on the probability that ݕ௜ ൌ 1 as 

(5)                                               
ப୔ቀ௬೔ୀଵ|ܑܠ,ௐ೔ೕ௬ೕ

∗ቁ

பܑܠ
ൌ ϕ ൬

ܑܠ
∗ᇲ઺

ఙ೔
൰
઺∗

ఙ೔
 

where ઺∗ ൌ ሺ۷ܖ െ ሻ୧୧ܖ܅ߩ
ିଵ઺ and ϕሺ. ሻ is the pdf for normal distributions. It seems clear that 

changes in explanatory variable values close to the mean may have a more important influence 
on the probability that ݕ௜ ൌ 1 than changes in its extreme values, ceteris paribus. Therefore, 
model estimates are often interpreted using mean values of a regressor, say ܠ௞, and the spatial 
marginal effects are then evaluated as the change in the probabilities that the vector ܡ ൌ ૚ 
associated with a change in x୩തതത (see also LeSage and Pace, 2009): 

(5)                                 ப୔
ሺܡୀ૚|ܡ܅,܆∗ሻ

பܓܠ
ൌ ϕሺ۲ି½۷ܖ∗x୩തതതߚ௞ሻ۲ି½۷ߚ∗ܖ௞8 

where ۷ܖ∗ ൌ ሺ۷ܖ െ  and ۲ି½ is the inverse diagonal matrix of standard deviations based ܖሻିଵ۷ܖ܅ߩ
on the variance-covariance matrix of u (i.e., ઱). However, Beron and Vijverberg (2004) 
highlighted the importance of calculating the single marginal impact for each observation ݔ௜௞ 
and then summarizing this through averaging. Spatial marginal effects are then split into an 

                                                 
7 Generally speaking, identification problems are related to the lack of information respect to the number of parameters that need 
to be estimated. In this way, the parameters cannot be univocally estimated and all estimators become inconsistent; in particular, 
in that case only the ratio ߪ/ߚ is identified. 
8 Note that in LeSage and Pace (2009) the matrix ۲ି½, which accounts for heteroskedasticity, is not considered (see LeSage and 
Pace, 2009, page 294, equation (10.10); Beron and Vijverberg, 2004, page 174, equation (8.15)). 
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average direct impact and an average indirect impact. The average of the diagonal elements of 
the n-by-n matrix obtained in (5) can be interpreted as the average direct effect (i.e., the impact 
from their own regions), the average of the cumulated off-diagonal elements as the average 
indirect effect—also known as spatial spillover effect (i.e., the impact from other regions), and 
finally the average total effect as the sum of them (LeSage and Pace, 2009; LeSage et al., 2011). 
Moreover, LeSage et al. (2011) stressed the need of considering changes in the dependent 
variable probability relative to the values of ܓܠ

∗ ൌ ሺ۷ܖ െ ሻ୧୧ܖ܅ොߩ
ିଵܠ௞ rather than to the simple ܠ௞. 

They also stressed the need to calculate measures of dispersion for these estimates.                                                

3.1 Maximum Likelihood (ML) Estimation 

Consider a standard probit model—that is, a probit model without spatial autocorrelation. 
If the conditional distribution of ݕ௜  is known up to a finite small number of parameters β, it is ܑܠ|
possible to estimate β by choosing values in a way that the distribution is as consistent as 
possible with the sample. In other words, given the distributional assumption, we define the 
likelihood of our sample as a function of the unknown parameters β that characterize the 
assumed distribution, and then we choose the values of the parameters in a way that the 
probability—likelihood—of our sample is maximized. If the distribution assumption is correctly 
specified,9 maximum likelihood estimators are consistent, asymptotically efficient and 
asymptotically normal.10 Given their potential statistical properties, nonlinear models are 
generally estimated by maximum likelihood estimation (MLE). 

If we instead consider a spatial probit model as in (1), complications arise in the 
estimation of parameters. First of all, spatial dependence introduces heteroskedasticity, which 
makes standard probit estimators inconsistent. By assuming independent errors, the likelihood 
function remains consistent but no longer efficient because it does not use the information in the 
off-diagonal terms of the variance-covariance matrix ઱. Moreover, the problem of 
multidimensional integration must be solved in order to address the heteroskedasticity and also 
to use the additional off-diagonal information (see Appendix A). Therefore, if we refer to the 
model in (1) with spatial autocorrelation in the dependent unobserved variables ܡ∗, the spatial 
probit log-likelihood function for a sample of n individuals is  

(6)      ݈ሺߚ, ሻ∗ܡ܅,܆|ߩ ൌ ∑ ௜lnݕ
୬
୧ୀଵ Φ ൬

∑ ௪೔ೕ௬ೕ
∗ାܑܠ

ᇲ઺౤
ౠసభ

ఙ೔
൰ ൅ ∑ ሺ1 െ ௜ሻlnݕ ൤1 െ Φ൬

∑ ௪೔ೕ௬ೕ
∗ାܑܠ

ᇲ઺౤
ౠసభ

ఙ೔
൰൨୬

୧ୀଵ  

where the term ܡ܅∗ is exogenous11 and ߪ௜ is the ith standard deviation based on ઱. However, the 
term ܡ∗ is unobserved so the expression in (6) is not operational (see also Anselin, 2002). As a 
consequence, we need to consider the reduced form in (2) to define a feasible likelihood 
function. For this purpose, define ܆∗ ൌ ሺ۷ െ ܝ and ܆ሻିଵ܅ߩ ൌ ሺ۷ െ  ሻିଵઽ. The reduced form܅ߩ
in (2) is  

                                                 
9 This is a strong assumption. Many authors have highlighted the unfortunate consequences of maximum likelihood estimates 
when a model is misspecified—that is, when the actual distribution is not exactly what we have assumed (see e.g., Bera, Jarque, 
and Lee, 1984; Bera and Bilias, 2002; among others). In some cases, however, the maximization of a misspecified loglikelihood 
function can arrive at a consistent estimator, i.e., Quasi-ML estimator (also known as Pseudo-ML or Maximum Composite 
Likelihood (MCL) estimator). 
10 For an overview of the statistical properties of maximum likelihood estimators in econometrics see, e.g., Verbeek (2004). 
11 Opposed to ML estimation, the GMM estimation correctly treats the spatial lagged variables ܡ܅∗ endogenously (see Section 
3.2). 
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∗ܡ                                             (7) ൌ ઺∗܆ ൅ ,MVNሺ૙~ܝ					,ܝ ઱ሻ 

where ઱ ൌ ሾሺ۷ െ ሻ′ሺ۷܅ߩ െ  ఌଶ as before. The log-likelihood function implied by theߪሻሿିଵ܅ߩ
reduced form of the spatial autoregressive-regressive probit model will be 

(8)                 ݈ሺߚ, ሻ∗ܡ܅,܆|ߩ ൌ ∑ ௜lnݕ
୬
୧ୀଵ Φ ቀܑܠ

∗ᇲ઺

ఙ೔
ቁ ൅ ∑ ሺ1 െ ௜ሻlnݕ ቂ1 െ Φቀܑܠ

∗ᇲ઺

ఙ೔
ቁቃ୬

୧ୀଵ  

where ߪ௜ is the ith standard deviation based on ઱ as before. Note that the term Φቀܑܠ
∗ᇲ઺

ఙ೔
ቁ is exactly 

that found in (4)— i.e., the probability that ݕ௜ ൌ 1 in the spatial autoregressive probit model. 

3.2 Generalized method of moments estimation and its linearization 

The generalized method of moments (GMM) approach (Hansen, 1982) includes the 
general class of estimators to which ordinary least squares (OLS) estimators, instrumental 
variable (IV) estimators, generalized instrumental variable (GIV) estimators, and two-stage least 
squares (2SLS) estimators belong. GMM can allow nonlinear estimation and it differentiates 
from ML in that it does not assume a functional form for the model, but only general hypotheses 
on moments. In this sense the GMM estimator is considered a semiparametric estimator. In 
particular, the parameters have to be directly estimated with some moment conditions specified 
by the model, and, in order to assure the identifiability of the model, the number of these 
conditions have to be equal or bigger than the number of the parameters. In some cases, as the 
following one, the ML function can be used to derive the set of moment conditions to be used in 
a GMM approach, by observing that the first order conditions of the likelihood maximization 
problem can be seen as sample means based on theoretical moment conditions. Although the 
GMM estimator cannot generally be calculated in an analytical way, it is possible to demonstrate 
that it is consistent and asymptotically normal under some regularity conditions, although it 
remains less efficient than the ML estimator. 

Kelejian and Prucha (1998, 1999) introduced the GMM approach to spatial econometrics. 
When it comes to spatial discrete choices, however, Pinkse and Slade’s (1998) GMM approach 
has been key. In particular, their GMM technique is based on the moment conditions implied by 
the likelihood function for a spatial error probit model (SEPM) with heteroskedasticity. 
Consider the following model in a latent form 

∗ܡ                                              (9) ൌ ઺܆	 ൅ ܝ         ,ܝ ൌ ܝ܅ߣ ൅ ઽ 

ઽ~MVNሺ૙,  ۷ሻ	ఌଶߪ

where all the variables and parameters are the same as in (1). If the same assumptions for the 
model in (2) hold, the model can be written in a reduced form as 

∗ܡ                                          (10) ൌ ઺܆ ൅ ሺ۷ െ ሻିଵઽ܅ߣ ൌ ઺܆ ൅                                                     ܝ

where ܝ ൌ ሺ۷ െ ሻ′ܝܝMVNሺ૙,ષሻ with variance-covariance matrix Eሺ~ܝ ሻିଵઽ and܅ߣ ൌ ષ ൌ
ሾሺ۷ െ ሻ′ሺ۷܅ߣ െ  ఌଶ term is usually normalized to 1 to avoid identificationߪ ఌଶ. Again, theߪሻሿିଵ܅ߣ
problems with the model. As shown in Section 3.1, for a spatial error probit model as in (9) the 
heteroskedastic log-likelihood function is equal to 

(11)                     ݈ሺߚ, ሻܝ܅,܆|ߣ ൌ ∑ ௜lnݕ
୬
୧ୀଵ Φ ቀܑܠ

ᇲ઺

ఙ೔
ቁ ൅ ∑ ሺ1 െ ௜ሻlnݕ ቂ1 െ Φቀܑܠ

ᇲ઺

ఙ೔
ቁቃ୬

୧ୀଵ  
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where ߪ௜ is the ith standard deviation based on ષ. From the log-likelihood function, Pinkse and 
Slade (1998) defined the theoretical moments conditions for the heteroskedastic spatial error 
probit model as 

(12)                             Eሾfሺݕ௜, ,ܑܠ ,ܑܐ ,ߚ ሻሿߣ ൌ E ൦ܑܐ
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and so, the sample moments were equal to 

(13)                                   mሺߚ, ሻߣ ൌ ଵ

௡
∑ ܑܐ

ᇱ ൦
൭௬೔ି஍ቆ

ܑܠ
ᇲ઺
഑೔
ቇ൱மቆ

ܑܠ
ᇲ઺
഑೔
ቇ

஍ቆ
ܑܠ
ᇲ઺

഑೔
ቇ൭ଵି஍ቆ

ܑܠ
ᇲ઺

഑೔
ቇ൱

൪୬
୧ୀଵ   

where ݄௜ is the ith row of a matrix of instruments ۶12, ϕሺ. ሻ is the standard normal density 
function and Φሺ. ሻ is the cumulative normal density function. Note that in the square parenthesis 
we have the so-called generalized probit residuals for a spatial autoregressive-regressive error 
probit model. If the number of the moments conditions is greater than that for parameters, as it is 
often the case, it is not possible to univocally identify the estimate of the parameters by simply 
setting mሺߚ, ሻߣ ൌ 0. But it is possible to choose the set of GMM estimates so that the sample 
moments vector tend to be close to zero. Therefore, GMM minimizes the criteria 

(14)                                         Sሺߚ, ሻߣ ൌ ,ߚሺܕ ,ߚሺܕ૚ିۻሻᇱߣ  ሻߣ

where ۻ is any positive-definite matrix that defines the weight that has to be assigned to the 
different sample moments ܕሺߚ, .ሻߣ 13 Since (14) cannot be calculated analytically, the GMM 
estimator is found numerically with an appropriate algorithm. The GMM estimator has to 
estimate all the parameters together (see footnote 2), which requires the evaluation of ષ for any 
candidate choice of  as part of the nonlinear optimization of the minimization criteria. Due to 
the complex form of ષ, which includes inverses of n-by-n matrices that depend on the spatial 
parameter, the optimization problem can become quite intractable. 

Recently, Klier and McMillen (2008) have proposed a linearized GMM (LGMM) 
estimation to avoid the problem of inverting large n-by-n matrices. They used Pinkse-Slade 
GMM approach and its linearized version on a spatial logit model.14 The linearized GMM 
estimates the model in two steps. The first is a standard logit model, in which spatial 
autocorrelation and heteroskedasticity are ignored. The second involves 2SLS estimates of the 
linearized model. Therefore, standard GMM reduces to nonlinear 2SLS. Now, consider the 
spatial autoregressive probit model in (1). Their basic idea consists of making an explicit 

                                                 
12 The choice of the set of instruments ۶ is particularly important and in some cases it cannot be identified. In particular, a 
necessary condition is the high correlation between the set of instruments and the endogenous regressors in the model. Moreover, 
the condition ܧሺߝ௜݄௜ሻ ൌ 0 has to be verified. 
13 In particular, in order to find the GMM estimator with lowest covariance matrix, the optimal weight matrix ۻ୭୮୲ is usually 
chosen as the inverse of the variance-covariance matrix of the sample moments. If instead ۻ ൌ ሺ۶′۶ሻି૚, the GMM estimator 
reduces to nonlinear 2SLS estimator. 
14 The linearized GMM approach can be easily extended to the spatial mixed autoregressive-regressive probit models in a 
reduced form as in (2). 
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approximation and linearization of the model around a convenient starting point, which is the 
standard probit estimation of the model in (1). In fact, when =0, no matrices need to be inverted 
because ሺ۷ െ ሻ܅ߩ ൌ ۷ and standard probit estimators are consistent for β. The estimation 
procedure involves the following two steps. 

First Step: Standard probit estimation of ࢟ on ࢄ. Estimate the standard probit model, 
without autocorrelation and heteroskedasticity, with the standard probit estimator. The 

estimated values are  ઺෡ܘ.ܜܛ.. Calculate the generalized residuals, ݁௜, as 
ቀ௬೔ି஍൫ܑܠ

ᇲ઺෡ܘ.ܜܛ.൯ቁம൫ܑܠ
ᇲ઺෡ܘ.ܜܛ.൯

஍൫ܑܠ
ᇲ઺෡ܘ.ܜܛ.൯ቀଵି஍൫ܑܠ

ᇲ઺෡ܘ.ܜܛ.൯ቁ
, 

and define the gradient terms as 

 Gஒ౟ ൌ ϕ൫ܑܠ
ᇱ઺෡ܘ.ܜܛ.൯ ቀ1 െ Φ൫ܑܠ

ᇱ઺෡ܘ.ܜܛ.൯ቁ ܑܠ
ᇱ for β and 

 G஡౟ ൌ ϕ൫ܑܠ
ᇱ઺෡ܘ.ܜܛ.൯ ቀ1 െ Φ൫ܑܠ

ᇱ઺෡ܘ.ܜܛ.൯ቁ ሺ܆܅ሻ௜઺෡ܘ.ܜܛ. for ρ, where ሺ܆܅ሻ௜ is the ith row of the 

matrix in parenthesis. 

Second Step: 2SLS estimation. First, regress ۵઺ and ۵ૉ on the matrix of instruments ۶. The 

predicted values are ۵෡઺ and ۵෡ૉ. Second, define ܞ ൌ ܍ ൅ ۵઺
ᇱ ઺෡ܘ.ܜܛ. and regress ܞ on ۵෡઺ and ۵෡ૉ. 

The coefficients are the estimated values of β and ρ. 

Assuming that the true structure of the model is given by (1), Klier and McMillen (2008) 
have found that the linearization provides accurate estimates as long as ρ is small. Thus, in 
general, the linearized model can yield a reasonable approximation to the unknown underlying 
spatial model. When compared to the standard GMM, however, the linearized version is less 
efficient due to higher standard errors. 

4. MONTE CARLO SIMULATION 

We perform SAPM as in (1) with a single regressor ܠ, where ܆ ൌ ሺ૚,  ሻ is an n-by-2ܠ
matrix with a column vector of ones for the constant term and a regressor ܠ, whereas β=(β₀, β₁) 
is a vector of two parameters. In our experiments ܠ is fixed for each replication of an experiment 
and drawn from a U(-1,1) distribution. The autoregressive parameter ρ varies from -0.9 to 0.9, 
whereas β₀=0 and β₁=1 are fixed for all experiments. The spatial weight matrices, 15 Wn, are  
n-by-n row-normalized matrices based on both queen-contiguity and k-nearest neighbors criteria. 
In addition to regular square lattice grids, the Wn are also built on irregular shapes (see Figure 
1). We distinguish the experimental plane in order to consider the ML estimation, the GMM, or 
the Linearized GMM estimation.16 For all three, we previously define ܆∗ ൌ ሺ۷ െ  in ܆ሻି૚܅࣋
order to account for autocorrelation structure, and ܁࢏܆

∗ ൌ ࢏܆
∗ ⁄࢏࣌  to correct the heteroskedasticity 

introduced by the spatial autocorrelation.17 

                                                 
15 For different weight matrices Wn we calculated the values of ߣ௠௜௡

ିଵ ௠௔௫ିଵߣ)   is always equals to 1 in row-normalized Wn), which 
vary with sample sizes and the different criteria used. It has been verified that the process is stationary for all ߩ ൌ ሾെ0.9; 0.9ሿ 
according to our experimental plane. See footnote 6 for references and details on general stationary conditions of the spatial 
process. 
16 We perform all the experiments in R language, and we use the spdep and the McSpatial packages developed by Roger Bivand 
and Daniel McMillen, respectively. 
17 Remember that ߪ௜ is the ith standard deviation based on the variance-covariance matrix Σ. 
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Therefore, the predicted probabilities that yi is equal to 1 constitute a column vector ܘ ൌ ઴ሺ܁܆
∗઺ሻ 

as in Equation (4). For the GMM case we introduce the initial values of the parameters in the 
GMM estimation function, and =[-0.9;0.9], and we consider a set of instruments equals to 
۶ ൌ ሾ܆܅,܆ሿ. A different set of instruments, ۶ ൌ ሾ܅,܆܅,܆૛܅,܆૜܆ሿ, is also included. Finally, 
for the Linearized GMM estimation the second step involves 2SLS estimates of the linearized 
model, in which we consider the set of instruments ۶ ൌ ሾ܆܅,܆ሿ. Again, a different set of 
instruments ۶ ൌ ሾ܅,܆܅,܆૛܅,܆૜܆ሿ is also included. In order to construct the observed 
dependent variable yi for each replication, we draw a vector of errors ܍ from a U(0,1) 
distribution, and we define 

(15)                                               ൜
௜ݕ ൌ 1				݂݅	݁௜ ൑ 																							௜݌
௜ݕ ൌ ,݁ݏ݅ݓݎ݄݁ݐ݋	0 ∀݅ ൌ 1,…݊  

The number of observations n are 100 for a 10-by-10 regular square lattice grid, 400 for a 20-by-
20 regular square lattice grid, 1,600 for a 40-by-40 regular square lattice grid and finally 1,343 
from the actual data set. We run a different number of replications according to the type of the 
experiment,18 and summarize the results in terms of the mean, the standard deviation, the mean 
square error (MSE), the relative absolute bias (RAB) and the relative MSE (RMSE). In 
particular, the RABs are calculated as 

ெ௅௩௦ீெெܤܣܴ     (16) ൌ หߠ െ ெ௅෢ߠ ห หߠ െ ெெ෣ீߠ หൗ ெ௅௩௦௅ீெெܤܣܴ      , ൌ หߠ െ ெ௅෢ߠ ห หߠ െ ௅ீெெ෣ߠ หൗ  

 
 

Figure 1. Shapes from Bivand’s and McMillen’s Packages 
           

          (a) Regular Square Lattice Grid            (b) Map of Cook County’s Census Tracts  

                                                 
18 Because of the time used by ML estimator, we run 300 replications when n=1,600 and 1,000 replications in all the other cases. 
Whereas, when n=1,343 (actual data set) we run one replication for each estimator in order to compare different estimators with 
the same sample of observations. 
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where ી ൌ ሺߚ଴, ,ଵߚ ෢ۺۻሻ′ is the column vector of fixed parameters, ીߩ ൌ ൫ߚ଴෢, ,ଵ෢ߚ  ො൯′ is the columnߩ
vector of parameters estimated by Maximum Likelihood, ી۵ۻۻ෣ ൌ ൫ߚ଴෢, ,ଵ෢ߚ  ො൯′ is the columnߩ
vector of parameters estimated by GMM, and ીۻۻ۵ۺ෣ ൌ ൫ߚ଴෢, ,ଵ෢ߚ  ො൯′ is the column vector ofߩ
parameters estimated by Linearized GMM. Whereas the RMSEs are calculated as 

ெ௅௩௦ீெெܧܵܯܴ         (17) ൌ ெ௅ܧܵܯ ⁄ெெீܧܵܯ ெ௅௩௦௅.ீெெܧܵܯܴ       , ൌ ெ௅ܧܵܯ ⁄௅ீெெܧܵܯ  

where ܧܵܯ ൌ ݁ܿ݊ܽ݅ݎܽݒ ൅  .ଶ for each type of estimatorݏܾܽ݅

5. RESULTS 

In this section we present the main statistical results based on the previous Monte Carlo 
scenarios. We first propose in Section 5.1 a comparison between the ML estimation, Pinkse and 
Slade’s (1998) GMM estimation, and Klier and McMillen’s (2008) LGMM estimation both in 
terms of their statistical properties and computational times. We do so by using the same Wn 
matrix based both on the queen contiguity-based criterion and on a regular square lattice grid. In 
Section 5.2 we compare them by using different weight matrices based on the irregular shapes of 
Cook County census tracts and applying different instruments matrices for the GMM-based 
estimators. We also evaluate the relative marginal effects, whose particular interpretation has 
been recently developed by LeSage and Pace (2009) and LeSage et al. (2011) for spatial 
autoregressive-regressive probit models (SAPMs). 

5.1 Statistical properties and computational times 

In this subsection we show the main statistical and computational results by comparing 
ML- to GMM-based estimators.19 We distinguish the results across different true values of ρ and 
different sample sizes for both the unbiasedness (RAB values) and the efficiency (RMSE values) 
in Figure 2 (see also Table 1b in Appendix C for details). We also briefly compare them in terms 
of their computation times (Table 1). 

First we compare the ML and GMM estimators. The results in terms of the RAB and 
RMSE values suggest a slight superiority of the ML estimator (i.e., the majority of the values are 
smaller than or around the value 1.0) with some exceptions. In particular, the GMM estimator 
seems to be less biased in the estimation of ρ in the presence of higher negative spatial 
autocorrelations, although with higher MSE values. Moreover, GMM also seems to generate less 
bias, albeit negligible in the estimation of β₁	yields	a ρ value around 0.0. In general, ML seems 
to estimate the parameters better than does the GMM estimator, especially in the presence of 
positive spatial autocorrelation and for higher sample sizes (see also Table 1b in Appendix C). 
Indeed, as expected, in these particular cases the ML estimator appears to perform even better 
from a comparative perspective.  

The LGMM estimator seems to work in a considerably different way. As a matter of fact, 
the LGMM estimator seems to be less biased than the ML estimator as long as n<1,600 and 
<0.5,  especially  in  the  estimation  of  β₁.  In  terms  of  the  RMSEs,  the   ML   estimator   is  

                                                 
19 We should clarify that we had problems when simulating with the GMM estimator, especially for sample sizes smaller than 
1,000. In particular, we found that for sample sizes smaller than 1,000 the GMM estimation function provided a lower number of 
replication results before stopping itself with an error in the “for” loop, whereas it seemed to work quite well as n increased. 
Moreover, the problem of collecting replication results was more evident as ρ increased in absolute value (i.e. |ߩ| → 1). 
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Figure 2: A Statistical Comparison between ML and GMM-based Estimators 
ML vs GMM 

ML vs LGMM 

Note: both RAB and RMSE values bigger than 1.0 indicate an advantage of the GMM-based estimators over the ML estimator in terms 
of the unbiasedness and the efficiency respectively. Situations in which the values are close to 1.0 indicate a similar behavior. However, 
since both RAB and RMSE values vary from 0 to ൅∞ then distances from 1 to values bigger than 1.0 have a lower “weight” than the 
same distances to values lower than 1.0, so for significant advantages we need to consider at least RAB and RMSE values bigger than 
2.0. For details see Table 1b in Appendix C. 

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
A
B
 β
₁

0.00 1.00 2.00 3.00 4.00

n=1,600

n=400

n=100

0.00 1.00 2.00 3.00 4.00

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
M
SE
 β
₁ n=1,600

n=400

n=100

0.00 1.00 2.00 3.00 4.00

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
A
B
 ρ

n=1,600

n=400

n=100

0.00 1.00 2.00 3.00 4.00

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
M
SE
 ρ n=1,600

n=400

n=100

0.00 1.00 2.00 3.00 4.00

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
A
B
 β
₁ n=1,600

n=400

n=100

0.00 1.00 2.00 3.00 4.00

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
M
SE
 β
₁ n=1,600

n=400

n=100

0.00 1.00 2.00 3.00 4.00

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
A
B
 ρ

n=1,600

n=400

n=100

0.00 1.00 2.00 3.00 4.00

ρ=‐0.9

ρ=‐0.6

ρ=‐0.4

ρ=‐0.25

ρ=‐0.1

ρ=0

ρ=0.1

ρ=0.25

ρ=0.4

ρ=0.6

ρ=0.9

R
M
SE
 ρ n=1,600

n=400

n=100



BILLÉ: COMPUTATIONAL ISSUES IN THE ESTIMATION OF THE SPATIAL PROBIT MODEL  143 

© Southern Regional Science Association 2014. 

Table 1: Computation Times for the ML, GMM, and LGMM Approaches 

Computation times 
 (seconds, tenths, and hundredths)  

݊ ൌ 100 ݊ ൌ 400 ݊ ൌ 1,600 

ML GMM LGMM ML GMM LGMM ML GMM LGMM 

ρ=-0.9 0.1753 0.0864 0.0105 3.4064 1.3617 0.0159 172.1174 67.7876 0.0422 

ρ=-0.6 0.1572 0.0783 0.0102 3.0069 1.3706 0.0159 132.7551 66.6018 0.0412 

ρ=-0.4 0.1572 0.0941 0.0102 2.7553 1.4551 0.0156 129.3850 67.3620 0.0419 

ρ=-0.25 0.1456 0.0774 0.0103 2.6648 1.3479 0.0159 133.4581 66.8731 0.0414 

ρ=-0.1 0.1552 0.0810 0.0102 2.6954 1.3656 0.0158 137.8382 66.8699 0.0410 

ρ=0 0.1469 0.0748 0.0109 2.6686 1.2298 0.0159 142.4324 59.3239 0.0421 

ρ=0.1 0.1400 0.0713 0.0104 2.7042 1.2897 0.0156 142.4667 66.0366 0.0416 

ρ=0.25 0.1488 0.0830 0.0103 2.7985 1.2886 0.0159 144.1595 66.9285 0.0412 

ρ=0.4 0.1401 0.0819 0.0102 2.7249 1.3574 0.0155 145.9114 68.7565 0.0413 

ρ=0.6 0.1481 0.0748 0.0102 2.9458 1.2829 0.0158 153.8163 66.2017 0.0415 

ρ=0.9 0.1727 0.0942 0.0104 3.3259 1.4351 0.0159 173.6253 69.4316 0.0412 

Note: Times over one single replication for different values of  and different sample sizes. 

considerably more efficient than its LGMM equivalent, especially for the estimation of ρ and for 
higher positive spatial autocorrelations. In addition, the LGMM estimator seems to work well in 
the presence of negative spatial autocorrelations in terms of the unbiasedness of β₁. In 
conclusion, for smaller sample sizes and as long as the spatial autocorrelation is not higher than 
approximately 0.5, LGMM is preferred especially for the estimation of β₁. By contrast, in all 
other cases the ML estimator seems to work better. 

Consider the following results in terms of the computation times. In Table 1 we show 
together the overall results of the computational times in seconds, tenths, and hundredths 
required by ML and GMM-based estimators. When n=100 and n=400, time consumption 
between positive and negative values of ρ is approximately the same, especially for the 
Linearized GMM estimator. Whereas, when n=1,600 we need to distinguish the case when ρ 
assumes positive values from the case when it assumes the negative ones, since the time used 
especially by ML estimator in some particular cases is now significantly different. For all 
different sample sizes the Linearized GMM estimator has a significant advantage over both ML 
and GMM estimators. Moreover, as the value of ρ rises, the distance between those estimators 
increases. The Linearized GMM estimator seems to approximate a constant time trend for 
different positive and negative values of ρ and different sample sizes. On the contrary, the ML 
and GMM estimators seem to have an exponential time trend as ρ increases in absolute value, 
especially for higher sample sizes. The computation time for the ML estimator is about twice that 
of the GMM estimator for different values of ρ and different sample sizes. Finally, the 
augmentation of the time used by ML with respect to different values of ρ appears asymmetrical 
around the value zero, minimizing where ߩ ൌ െ0.4. 

5.2 Different weight matrices, different instruments, and marginal effects 

In spatial econometrics with discrete choices, when space is tessellated into units, spatial 
autocorrelation is usually expressed in terms of relationships on a graph rather over distance, and 
a spatial weights matrix is needed to describe the assumed underlying spatial processes (Bivand, 
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2008). Moreover, the arbitrary nature of the representation of spatial processes, and hence the 
choice of the Wn matrix, seems to be unavoidable.20 In a parametric spatial econometric context, 
one possible solution consists in using different definitions of the spatial weight matrix (which 
are reasonable for our economic purposes), in order to check if they lead to significant 
differences in the estimates of the parameters, and in particular in the relative marginal effects. 
Moreover, according to Section 3.2, appropriate instruments have to be found when we use 
GMM-based estimators. Therefore, it could be interesting to compare those estimators based on 
differently defined sets of instruments. 

In this subsection we compare ML and GMM-based estimators by using different weight 
matrices (Wn) and different H instruments matrices according to our Monte Carlo scenarios 
(Section 4). For this comparison we use the Cook County Census Tracts data set (n=1,343) and 
differentiate the results across different values of ρ (ߩ ൌ േ0.1; ߩ	 ൌ േ0.4). Table 2(a,b) first 
displays the estimates of the ML, the GMM based on ۶ ൌ ሾ܆܅,܆ሿ instruments, the GMM based 
on ۶ ൌ ሾ܅,܆܅,܆ଶ܅,܆૜܆ሿ, the LGMM based on ۶ ൌ ሾ܆܅,܆ሿ instruments, and finally the 
LGMM based on ۶ ൌ ሾ܅,܆܅,܆ଶ܅,܆૜܆ሿ by using the same sample of observations. Then, for 
each, we determine the marginal effects based on the Equation (5) in two ways: (i) without 
considering the matrix ۲ି½ (column (1) in Table 2) based on LeSage and Pace (2009, p. 294, 
Equation (10.10)); (ii) considering the matrix ۲ି½ (column (3) in Table 2) based on Beron and 
Vijverberg (2004, p. 174, Equation (8.15)) (see also note 8). The resulting matrix is then split 
into the average direct effect and the average indirect effect (which is due to spatial spillover 
effects) as suggested in Section 3. We also include the same marginal effects based on the 
estimated values of ρ (columns (2) and (4)).  

First, it is clear that for different levels of lower-medium spatial autocorrelations, 
especially for β₀ and β₁, the estimated values of all the estimators considered are approximately 
the same. This suggests that GMM-based estimators do not lead to changes in the estimates when 
we specify different sets of instruments. However, significant differences, especially in the ρ 
parameter, can be found if we consider different spatial weight matrices, in our case one based 
on the queen’s criterion, ܅௤, and another based on the k-nearest neighbors with ݇ ൌ  .௞௡௡܅ ,10
As for the interpretation of marginal effects, the direct impact represents the impact of changes 
in ݔ௜௞ on ܲሺݕ௜ ൌ 1ሻ, whereas the indirect impact represents the impact of changes in ݔ௜௞ on 
ܲሺݕ௝ ൌ 1; ݆ ് ݅ሻ due to the proximity in space. 

As we can observe from Table 2(a,b), the total marginal effects are the same if we used 
the formulae from either Beron-Vijverberg or LeSage et al. Thus, the correction for 
heteroskedasticity introduced in the marginal effects have no significant impact on the total 
average. However, it seems that in the presence of low or medium positive spatial 
autocorrelations (i.e., =0.1; =0.4) the average indirect impact is somewhat higher 
(consequently the direct is lower) when we correct for heteroskedasticity, in which case the 
  

                                                 
20 The problem of choosing an appropriate weight matrix W is one of the most controversial discussions in the literature (Bell and 
Bockstael, 2000; Anselin, 2002; Bell and Dalton, 2007; Robinson, 2008; Bivand, 2008; Anselin, 2010). In some cases it has the 
disadvantage of imposing restrictive structure that can bias results when inappropriate (McMillen and McDonald, 2004; Klier and 
McMillen, 2008). For that reason, locally weighted regressions (LWRs) or geographically weighted regressions (GWRs) (e.g., 
Fotheringham, Charlton, and Brunsdon, 1998; LeSage, 2004), as well as other nonparametric estimation techniques, are 
becoming prevalent also in discrete choice setting. 
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Table 2a: A Comparison between ML and GMM Estimators with the Same Sample of Observations 

MARGINAL EFFECTS 
ON ݔ 

ESTIMATES (1) LeSage-et al. (2)LeSage-et al. with ߩො (3) Beron-Vijverberg* (4)Beron-Vijverberg* with ߩො 

β₀ β₁ ρ direct indirect total direct indirect total direct indirect total direct indirect total 

ߩ ൌ െ0.4 | 

௤ܹ 
ML -0.0210 1.0280 -0.2731 0.4189 -0.1261 0.2928 0.4142 -0.0922 0.3220 0.4058 -0.1130 0.2929 0.4079 -0.0859 0.3220 

GMM** -0.0210 1.0280 -0.2749 0.4189 -0.1261 0.2929 0.4143 -0.0927 0.3216 0.4058 -0.1130 0.2929 0.4079 -0.0863 0.3216 

GMM2*** -0.0209 1.0270 -0.2629 0.4185 -0.1259 0.2926 0.4135 -0.0892 0.3243 0.4054 -0.1129 0.2926 0.4076 -0.0833 0.3243 

L.GMM** -0.0212 1.0216 -0.2538 0.4163 -0.1253 0.2910 0.4111 -0.0861 0.3249 0.4033 -0.1123 0.2910 0.4056 -0.0807 0.3249 

L.GMM2*** -0.0211 1.0208 -0.2528 0.4160 -0.1252 0.2908 0.4107 -0.0858 0.3250 0.4030 -0.1122 0.2908 0.4053 -0.0804 0.3250 

ߩ ൌ െ0.4 |  

௞ܹ௡௡ 
ML -0.0197 1.0420 0.0860 0.4204 -0.1236 0.2968 0.4157 0.0388 0.4545 0.4131 -0.1163 0.2968 0.4152 0.0393 0.4545 

GMM** -0.0197 1.0421 0.0894 0.4204 -0.1236 0.2969 0.4157 0.0405 0.4562 0.4131 -0.1163 0.2969 0.4153 0.0410 0.4562 

GMM2*** -0.0195 1.0418 0.0862 0.4203 -0.1235 0.2968 0.4156 0.0389 0.4545 0.4130 -0.1162 0.2968 0.4152 0.0394 0.4545 

L.GMM** -0.0198 1.0415 0.0933 0.4202 -0.1235 0.2967 0.4155 0.0424 0.4580 0.4129 -0.1162 0.2967 0.4150 0.0429 0.4580 

L.GMM2*** -0.0197 1.0413 0.0936 0.4201 -0.1235 0.2966 0.4154 0.0425 0.4580 0.4128 -0.1162 0.2966 0.4149 0.0431 0.4580 

ߩ ൌ െ0.1 | 

௤ܹ 
ML -0.0065 1.0372 -0.3333 0.4143 -0.0382 0.3761 0.4200 -0.1097 0.3103 0.4134 -0.0373 0.3761 0.4107 -0.1004 0.3103 

GMM** -0.0061 1.0378 -0.3578 0.4145 -0.0382 0.3763 0.4212 -0.1163 0.3049 0.4136 -0.0373 0.3763 0.4105 -0.1056 0.3049 

GMM2*** -0.0065 1.0371 -0.3333 0.4142 -0.0382 0.3760 0.4200 -0.1097 0.3102 0.4133 -0.0373 0.3760 0.4106 -0.1004 0.3102 

L.GMM** -0.0070 1.0280 -0.3233 0.4106 -0.0379 0.3727 0.4159 -0.1061 0.3098 0.4097 -0.0370 0.3727 0.4072 -0.0974 0.3098 

L.GMM2*** -0.0070 1.0279 -0.3232 0.4106 -0.0379 0.3727 0.4159 -0.1060 0.3099 0.4097 -0.0370 0.3727 0.4072 -0.0973 0.3099 

ߩ ൌ െ0.1 | 

௞ܹ௡௡ 
ML -0.0074 1.0474 -0.5089 0.4181 -0.0383 0.3798 0.4254 -0.1485 0.2769 0.4175 -0.0378 0.3798 0.4140 -0.1371 0.2769 

GMM** -0.0082 1.0469 -0.4705 0.4179 -0.0383 0.3796 0.4242 -0.1402 0.2840 0.4173 -0.0378 0.3796 0.4143 -0.1303 0.2840 

GMM2*** -0.0076 1.0473 -0.5045 0.4180 -0.0383 0.3797 0.4252 -0.1476 0.2776 0.4175 -0.0378 0.3797 0.4140 -0.1364 0.2777 

L.GMM** -0.0093 1.0366 -0.4002 0.4138 -0.0379 0.3758 0.4183 -0.1230 0.2953 0.4132 -0.0374 0.3758 0.4110 -0.1157 0.2953 

L.GMM2*** -0.0093 1.0359 -0.4000 0.4135 -0.0379 0.3756 0.4180 -0.1229 0.2951 0.4130 -0.0374 0.3756 0.4107 -0.1156 0.2951 

Note: The comparisons are made in terms of both parameter estimate values and marginal effects according to different weight matrices (Wq “queen” - Wknn “k-nearest 
neighbours”), different H instruments matrices and different negative lower/medium values of ρ. Marginal effects are split into direct impacts and indirect impacts. 
* Consider the heteroskedasticity in the evaluation of the marginal effects (see Equation 5). 
** GMM-based estimator with instruments ۶ ൌ ሾ܆܅,܆ሿ. 
*** GMM-based estimator with instruments ۶ ൌ ሾ܅,܆܅,܆૛܅,܆૜܆ሿ. 
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Table 2b: A Comparison between ML and GMM Estimators with the Same Sample of Observations (continued) 

MARGINAL EFFECTS 
ON ݔ 

ESTIMATES (1) LeSage-et al. (2)LeSage-et al. with ߩො (3) Beron-Vijverberg* (4)Beron-Vijverberg* with ߩො 

β₀ β₁ ρ direct indirect total direct indirect total direct indirect total direct indirect total 

ߩ ൌ 0.1 | 

௤ܹ 
ML 0.0166 0.9678 0.1596 0.3866 0.0423 0.4289 0.3875 0.0717 0.4593 0.3857 0.0432 0.4289 0.3851 0.0742 0.4593 

GMM** 0.0166 0.9679 0.1660 0.3866 0.0423 0.4289 0.3877 0.0751 0.4628 0.3857 0.0432 0.4289 0.3850 0.0778 0.4628 

GMM2*** 0.0167 0.9679 0.1622 0.3866 0.0423 0.4289 0.3876 0.0731 0.4607 0.3857 0.0432 0.4289 0.3851 0.0757 0.4607 

L.GMM** 0.0166 0.9650 0.1768 0.3855 0.0422 0.4276 0.3868 0.0807 0.4675 0.3845 0.0431 0.4276 0.3837 0.0837 0.4675 

L.GMM2*** 0.0168 0.9651 0.1763 0.3855 0.0422 0.4277 0.3868 0.0805 0.4672 0.3846 0.0431 0.4277 0.3838 0.0835 0.4673 

ߩ ൌ 0.1 | 

௞ܹ௡௡ 
ML 0.0064 0.9697 -0.0162 0.3871 0.0426 0.4297 0.3868 -0.0062 0.3806 0.3865 0.0432 0.4297 0.3868 -0.0061 0.3806 

GMM** 0.0064 0.9697 -0.0141 0.3871 0.0426 0.4297 0.3868 -0.0054 0.3814 0.3865 0.0432 0.4297 0.3867 -0.0054 0.3814 

GMM2*** 0.0066 0.9689 -0.0183 0.3868 0.0426 0.4294 0.3865 -0.0070 0.3795 0.3862 0.0431 0.4294 0.3864 -0.0069 0.3795 

L.GMM** 0.0064 0.9697 -0.0141 0.3871 0.0426 0.4297 0.3868 -0.0054 0.3814 0.3865 0.0432 0.4297 0.3867 -0.0054 0.3814 

L.GMM2*** 0.0067 0.9689 -0.0161 0.3868 0.0426 0.4293 0.3864 -0.0061 0.3803 0.3862 0.0431 0.4293 0.3864 -0.0061 0.3803 

ߩ ൌ 0.4 | 

௤ܹ 
ML 0.0143 1.0352 0.4615 0.4251 0.2630 0.6882 0.4300 0.3367 0.7666 0.4053 0.2829 0.6882 0.4019 0.3648 0.7667 

GMM** 0.0137 1.0374 0.4739 0.4260 0.2636 0.6896 0.4320 0.3543 0.7864 0.4061 0.2835 0.6896 0.4020 0.3844 0.7864 

GMM2*** 0.0133 1.0326 0.4673 0.4240 0.2624 0.6864 0.4294 0.3437 0.7731 0.4042 0.2822 0.6864 0.4005 0.3726 0.7731 

L.GMM** 0.0043 1.0006 0.5933 0.4109 0.2542 0.6651 0.4303 0.5507 0.9810 0.3917 0.2734 0.6651 0.3777 0.6035 0.9811 

L.GMM2*** 0.0035 0.9978 0.5935 0.4097 0.2535 0.6633 0.4291 0.5496 0.9787 0.3906 0.2727 0.6633 0.3766 0.6022 0.9788 

ߩ ൌ 0.4 |  

௞ܹ௡௡ 
ML 0.0172 1.0218 0.4325 0.4149 0.2643 0.6792 0.4164 0.3017 0.7181 0.4022 0.2770 0.6792 0.4010 0.3172 0.7181 

GMM** 0.0165 1.0231 0.4482 0.4154 0.2647 0.6801 0.4177 0.3218 0.7395 0.4027 0.2774 0.6801 0.4008 0.3387 0.7395 

GMM2*** 0.0167 1.0223 0.4425 0.4151 0.2645 0.6796 0.4171 0.3142 0.7313 0.4024 0.2772 0.6796 0.4007 0.3306 0.7313 

L.GMM** 0.0090 0.9994 0.5867 0.4058 0.2585 0.6643 0.4176 0.5466 0.9642 0.3934 0.2710 0.6644 0.3826 0.5817 0.9642 

L.GMM2*** 0.0090 0.9990 0.5864 0.4057 0.2584 0.6641 0.4174 0.5457 0.9631 0.3933 0.2709 0.6641 0.3824 0.5808 0.9632 

Note: The comparisons are made in terms of both parameter estimate values and marginal effects according to different weight matrices (Wq “queen” - Wknn “k-nearest 
neighbours”), different H instruments matrices and different positive lower/medium values of ρ. Marginal effects are split into direct impacts and indirect impacts. 
* Consider the heteroskedasticity in the evaluation of the marginal effects (see Equation 5). 
** GMM-based estimator with instruments ۶ ൌ ሾ܆܅,܆ሿ. 
*** GMM-based estimator with instruments ۶ ൌ ሾ܅,܆܅,܆૛܅,܆૜܆ሿ. 
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spatial spillover effects play a more important role. By contrast, the opposite can be found if we 
instead considered negative spatial autocorrelations (i.e.,  = -0.1;  = -0.4). That is, the values 
are still higher but the magnitude of the impact is reduced due to a negative sign. Finally, note 
that evaluating marginal effects as functions of ෝ࣋ produce substantial differences. 

6. A COMPUTATIONAL SOLUTION IN R FOR ML AND GMM ESTIMATES 

As we showed in Section 5, both ML and GMM estimators suffer from the calculation of 
n-by-n matrices. In a recent comparison between GMM and LGMM, Klier and McMillen (2008) 
propose two approximations of the (I-W)-1 matrix to compute GMM estimates in a Monte Carlo 
experiment with 10,000 observations: (a) a third order expansion ሺ۷ െ ሻିଵ܅ߩ ൌ ۷ ൅ ൅܅ߩ
ଶ܅ଶߩ ൅ ଷ, and (b) a definition of the weight matrix as ௜ܹ,௝܅ଷߩ ൌ 0.5 if |݅ െ ݆| ൌ 1 (with 

ଵܹ,ଶ ൌ ௡ܹ,௡ିଵ ൌ 1). However, the definition of the statistical properties for large samples of our 
estimators without modifying the Wn structure seems more appropriate. Without any 
modification, we found that R was able to manipulate no more than 8,100 observations arranged 
on a 90-by-90 regular grid.21 Multicore processing does not help, but more efficient optimization 
algorithms and programming does. We therefore tried to optimize our R script progressively and 
removed workspace objects to obtain more RAM. After some matrix manipulations including 
matrix partitioning to calculate inverses (see Appendix B), we were able to obtain the estimates 
using R from a sample of 10,000 observations. Unfortunately, these manipulations did not also 
lead to significant computational advantages.22 In order to estimate computationally efficient 
spatial autoregressive probit models, a current solution is to use sparse matrices.23 In fact, 
creating inverses of the (I-W) matrices by using R’s solve function is the focus of most 
computational problems.  

In this section we provide some important results obtained by modifying McMillen’s 
spprobitml function for ML estimators. In Figure 3 we compare the computation times used by 
both the spprobitml function and the modified McMillen’s spprobitml function, which we label 
sparsespprobitml. In this modified function we used the powerWeights function available in the 
spdep package, which directly and efficiently calculates the matrix ሺ۷ െ ܆ሻି૚܅ߩ ൌ  for large ∗܆
matrices by using sparse spatial weight matrices. As before, we can calculate (I-W)-1 but this 
time by post-multiplying it with an identity matrix, that is, ሺ۷ െ ሻି૚۷܅ߩ ൌ ۷∗ ൌ ሺ۷ െ  .ሻି૚܅ߩ
This procedure can be easily extended to the GMM estimator. As we can observe in Figure 3, the 
computation times are all significantly reduced, especially for negative values of ρ, except for the 
strongest positive spatial autocorrelation and when n=2,500. 

As a consequence, the powerWeights function, correctly placed, is able to efficiently 
substitute for the solve function to estimate inverses of large matrices, without a significant effect 
on estimates (see Table 3). Perhaps using both partitioned matrices, which help to manage larges 
datasets, and sparse matrices, which reduce time requirements, can lead to better algorithmic 
solutions. Regardless  we  demonstrated  that  in  R (i) the solve function is not strictly necessary,  

                                                 
21 The PC’s main characteristics: (i) Intel® Core™ i5-2467M CPU @ 1.60 GHz, (ii) 4 GB RAM. 
22 Instead of directly taking the inverse on a 10,000-by-10,000 matrix, we progressively used R’s solve function on smaller square 
matrices (see Appendix B). R provided the estimates with a prohibitive computational time. 
23 See LeSage and Pace (2009) for the use of sparse matrices in MatLab for Bayesian estimation methods. 
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Figure 3: A Comparison of Computation Times between ML Estimators  

 
Note: Computational time ratios in seconds between the spprobitml function and the sparsespprobitml function in 
terms of different values of ρ when n=2,500 and n=8,100.  

Table 3: A Comparison of Estimate Values between ML Estimators 

sample size n=2,500 (50 x 50 regular grid) n=8,100 (90 x 90 regular grid) 

parameters β₀=0 β₁=1 ρ β₀=0 β₁=1 ρ 

ρ\estimators ML* spML** ML spML ML spML ML spML ML spML ML spML 

ρ=-0.9 0.1381 0.3289 1.0345 1.0397 -0.8327 -0.8757 0.0101 0.0191 1.0124 1.0141 -0.8217 -0.8153 

ρ=-0.4 -0.0127 -0.0130 0.9805 0.9800 -0.5445 -0.5166 -0.0225 -0.0226 0.9582 0.9582 -0.2137 -0.2151 

ρ=-0.1 0.0368 0.0368 1.0111 1.0111 -0.1703 -0.1694 0.0218 0.0218 1.0310 1.0310 -0.2139 -0.2123 

ρ=0.1 0.0158 0.0158 0.8826 0.8826 0.1469 0.1469 -0.0154 -0.0154 0.9863 0.9863 0.0721 0.0721 

ρ=0.4 -0.0126 -0.0126 0.9843 0.9843 0.3915 0.3915 -0.0134 -0.0134 0.9696 0.9696 0.3717 0.3717 

ρ=0.9 -0.0036 -0.0036 0.9878 0.9878 0.9146 0.9146 -0.0014 -0.0014 1.0080 1.0080 0.8975 0.8975 

Note: *ML estimates with McMillen’s spprobitml function; **spML estimates with sparsespprobitml function. 

 

especially for large matrices, and certainly costs time; (ii) the optimization algorithm and 
efficient programming techniques are critical when performing ML and GMM estimation; and 
(iii) the time used to calculate the inverse matrices directly depends on the relative location of 
weights within the spatial weight matrix. 

7. CONCLUSIONS 

In recent years many researchers have recognized the importance of introducing spatial 
autocorrelation effects in econometric models. However, when the dependent variable is 
unobserved some complications arise in the estimation of the parameters. A plausible reason for 
the relatively scarce diffusion of spatial autoregressive latent models is certainly their 
complexity. Closed-form solutions are precluded due to the presence of both unobserved 
dependent variables and spatial autocorrelation. Recently both ML and GMM-based estimators 
have been proposed. Although a problem of extreme computational intensity exists for ML 
estimators, especially in the calculation of inverses of n-by-n matrices, they have the potential 
advantage of providing efficient estimates (Wang, Iglesias, and Wooldridge, 2013). In this vein, 
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Klier and McMillen (2008) proposed a Linearized GMM estimator, which alleviates some of the 
computational intractability.  

In this paper we simulate a spatial mixed autoregressive-regressive probit model in order 
to compare statistical properties and computational times of a type of ML estimator with those of 
GMM-based estimators. Different spatial weight matrices and different sets of instruments are 
also considered. Comparisons between ML and LGMM suggest that the LGMM works quite 
well for smaller sample sizes and in the presence of lower levels of spatial autocorrelation. On 
the other hand, comparisons between ML and GMM reveal strong similarities in both estimates 
and statistical properties, although the ML in general yielded less biased and more efficient 
estimates than did the GMM, especially for positive values of ρ. Unfortunately, while somewhat 
reduced, the computation time required by both the ML and GMM estimators remained rather 
heavy and rose exponentially with rises in ρ and the sample size. By contrast, the LGMM 
estimator was substantially more time-efficient, and its time consumption remained fairly 
constant under different values of ρ and only rose linearly with sample size. 

When estimation algorithms are needed, considerations of both the choice of optimization 
algorithm and the use of time-efficient code are critical. In order to reduce computation times in 
both ML and GMM frameworks we suggest the use of sparse matrices. In particular, we used the 
powerWeights function, which is available in the spdep package, which efficiently calculates the 
ሺ۷࢔ െ  ሻିଵ matrix. We find that the times are significantly reduced for different values of ρ࢔܅ߩ
and different large sample sizes. Moreover, the estimates did not seem to undergo changes. A 
method based on partitioned matrices also has been introduced, but it seemed to yield no time 
benefits. 
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APPENDIX A. THE MULTIDIMENSIONAL INTEGRATION PROBLEM 

In order to illustrate a multidimensional integration problem for a spatial probit model, consider 
the reduced form in (2). Then, the joint probability will be 

PሺYଵ ൌ ,ଵݕ Yଶ ൌ ,ଶݕ … , Y୬ ൌ ;∗ܡ܅,܆|௡ݕ ,ߚ ሻߩ ൌ න …
௔భ

ିஶ
න …
௔೔

ିஶ
න ϕሺܝሻdܝ
௔೙

ିஶ
 

where ܽ௜ ൌ ሾ2ݕ௜ െ 1ሿ ܑܠ
∗ᇲ઺

ఙೠ೔
 and ϕሺܝሻ ൌ ሺ2ߨሻି௡ ଶ⁄ |઱|ିଵexp ቄെ ଵ

ଶ
ሺܝᇱ઱ି૚ܝሻቅ is the multivariate 

normal density function. In that case, due to the lack of independence, the spatially correlated 
covariance structure ઱ does not allow the typical simplification of the multivariate distribution 
into the product of univariate distributions as in the standard probit case (see Fleming, 2004 for 
details). 

APPENDIX B.  THE INVERSE OF A PARTITIONED MATRIX 

Consider a partitioned square matrix ۯ of dimension n by n as  

ۯ ൌ ൤
૚૚ۯ ૚૛ۯ
૛૚ۯ ૛૛ۯ

൨ 

where the elements ۯ૚૚, ,૚૛ۯ ,૛૚ۯ  ,૛૛ are themselves matrices of dimension (n/2)-by-(n/2) eachۯ
and in particular the diagonal blocks ۯ૚૚, ૚૚ۯ∃ ૛૛ are such thatۯ

ି૚, ૛૛ۯ∃
ି૚. Suppose we are 

interested in the inverse of the matrix ۯ. Then, matrix ିۯଵ can be written as 

૚ିۯ ൌ ቈ
૚૚ۯ
ି૚ሺ۷ ൅ ૚૚ۯ૛૚ۯ૚૛۰૛૛ۯ

ି૚ሻ െۯ૚૚
ି૚ۯ૚૛۰૛૛

െ۰૛૛ۯ૛૚ۯ૚૚
ି૚ ۰૛૛

቉ 

where ۰૛૛ ൌ ൫ۯ૛૛ െ ૚૚ۯ૛૚ۯ
ି૚ۯ૚૛൯

ି૚
. 
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APPENDIX C. Table 1b: Means, Standard Deviations, MSEs of θ=(β₀, β₁,ρ) for the ML, the GMM, and the LGMM Estimators  

 ML GMM LGMM 

n=
10

0 

ρ µ(β₀) sd(β₀) mse(β₀) µ(β₁) sd(β₁) mse(β₁) µ(ρ) sd(ρ) mse(ρ) µ(β₀) sd(β₀) mse(β₀) µ(β₁) sd(β₁) mse(β₁) µ(ρ) sd(ρ) mse(ρ) µ(β₀) sd(β₀) mse(β₀) µ(β₁) sd(β₁) mse(β₁) µ(ρ) sd(ρ) mse(ρ) 

-0.9 0.0028 0.2919 0.0852 1.0716 0.2593 0.0724 -0.6842 0.4174 0.2208 0.0075 0.6169 0.3807 1.0921 0.2935 0.0946 -0.8124 0.5803 0.3445 0.0059 0.2453 0.0602 0.9739 0.2364 0.0566 -0.7266 0.6947 0.5127 

-0.6 0.0152 0.2401 0.0579 1.0656 0.2454 0.0645 -0.4999 0.4919 0.2520 0.0070 0.4277 0.1830 1.1262 0.4785 0.2449 -0.6084 0.6273 0.3936 -0.0099 0.2187 0.0479 1.0021 0.2492 0.0621 -0.5597 0.6999 0.4914 

-0.4 -0.0036 0.2119 0.0449 1.0991 0.2910 0.0945 -0.3004 0.5580 0.3212 -0.0030 0.4216 0.1778 1.1262 0.3635 0.1480 -0.4810 0.6335 0.4078 -0.0107 0.2158 0.0467 1.0159 0.2542 0.0649 -0.4347 0.7539 0.5696 

-0.25 -0.0020 0.2083 0.0434 1.0661 0.2669 0.0756 -0.2320 0.5275 0.2786 0.0062 0.2893 0.0837 1.0894 0.2670 0.0793 -0.3358 0.6036 0.3717 -0.0009 0.1796 0.0323 1.0371 0.2452 0.0615 -0.2409 0.5125 0.2627 

-0.1 -0.0018 0.1863 0.0347 1.0677 0.2759 0.0807 -0.1027 0.5369 0.2882 -0.0721 0.6351 0.4086 1.1190 0.4563 0.2223 -0.2555 0.6254 0.4154 0.0061 0.1854 0.0344 1.0248 0.2658 0.0713 -0.1182 0.7844 0.6157 

0 -0.0005 0.1749 0.0306 1.0669 0.2714 0.0781 -0.0753 0.5371 0.2942 0.0166 0.2063 0.0428 1.0672 0.2641 0.0742 -0.0931 0.5066 0.2653 0.0010 0.1739 0.0302 1.0281 0.2559 0.0663 0.0051 0.7768 0.6034 

0.1 0.0078 0.1651 0.0273 1.1107 0.2813 0.0914 0.0268 0.5539 0.3121 -0.0113 0.3565 0.1272 1.0585 0.2897 0.0873 -0.0150 0.5142 0.2776 0.0048 0.1560 0.0244 1.0352 0.2702 0.0742 0.1544 0.6306 0.4006 

0.25 0.0178 0.1691 0.0289 1.0670 0.2749 0.0800 0.1184 0.4995 0.2668 0.0086 0.1673 0.0281 1.0771 0.3512 0.1293 0.1394 0.4734 0.2364 -0.0030 0.1346 0.0181 1.0133 0.2442 0.0598 0.3088 0.7041 0.4992 

0.4 0.0059 0.1510 0.0228 1.1230 0.3279 0.1226 0.2573 0.5168 0.2875 -0.0013 0.2004 0.0402 1.1058 0.4470 0.2110 0.2601 0.4824 0.2523 -0.0022 0.1213 0.0147 1.0095 0.2748 0.0756 0.5391 0.7186 0.5357 

0.6 -0.0067 0.1314 0.0173 1.1796 0.4678 0.2511 0.4786 0.4128 0.1851 -0.0095 0.3407 0.1162 1.2025 0.8948 0.8417 0.4716 0.4426 0.2124 -0.0669 0.1581 0.0295 0.9563 0.2549 0.0669 0.9581 0.7664 0.7157 

0.9 -0.0001 0.0446 0.0020 1.2193 0.5038 0.3020 0.8487 0.2104 0.0469 0.0212 0.6316 0.3993 1.2248 1.7675 3.1747 0.8337 0.2633 0.0737 0.3168 4.3445 18.9755 0.6873 0.2487 0.1597 2.4037 15.5473 243.9828 

n=
40

0 

-0.9 -0.0013 0.1414 0.0200 1.0119 0.1227 0.0152 -0.8035 0.2451 0.0694 -0.0003 0.1673 0.0280 1.0195 0.1278 0.0167 -0.8866 0.4092 0.1677 0.0018 0.1201 0.0144 0.9551 0.1275 0.0183 -0.7597 0.3548 0.1456 

-0.6 -0.0015 0.1178 0.0139 1.0118 0.1307 0.0172 -0.5826 0.3236 0.1050 0.0021 0.1430 0.0205 1.0248 0.1284 0.0171 -0.6401 0.4088 0.1687 -0.0041 0.1045 0.0109 0.9911 0.1203 0.0145 -0.5036 0.2939 0.0957 

-0.4 0.0066 0.1002 0.0101 1.0125 0.1249 0.0158 -0.4009 0.3414 0.1166 -0.0055 0.1992 0.0397 1.0281 0.1585 0.0259 -0.4206 0.3957 0.1570 -0.0024 0.0917 0.0084 0.9940 0.1242 0.0155 -0.3495 0.3155 0.1021 

-0.25 -0.0005 0.0920 0.0085 1.0213 0.1188 0.0146 -0.2657 0.3472 0.1208 0.0024 0.0943 0.0089 1.0254 0.1210 0.0153 -0.2881 0.3407 0.1175 0.0018 0.0841 0.0071 0.9997 0.1238 0.0153 -0.2364 0.3127 0.0979 

-0.1 0.0010 0.0823 0.0068 1.0167 0.1152 0.0136 -0.1366 0.3267 0.1081 -0.0011 0.0845 0.0071 1.0179 0.1212 0.0150 -0.1562 0.3346 0.1151 -0.0015 0.0749 0.0056 1.0069 0.1232 0.0152 -0.0875 0.3331 0.1111 

0 0.0003 0.0776 0.0060 1.0102 0.1204 0.0146 -0.0363 0.3166 0.1016 -0.0006 0.0728 0.0053 1.0115 0.1238 0.0155 -0.0384 0.3002 0.0916 -0.0017 0.0711 0.0051 1.0127 0.1279 0.0165 -0.0222 0.3402 0.1163 

0.1 0.0017 0.0684 0.0047 1.0191 0.1232 0.0155 0.0653 0.3027 0.0928 0.0021 0.0707 0.0050 1.0148 0.1237 0.0155 0.0499 0.3166 0.1027 -0.0015 0.0657 0.0043 1.0074 0.1205 0.0146 0.1042 0.2933 0.0860 

0.25 -0.0013 0.0587 0.0035 1.0149 0.1208 0.0148 0.2072 0.2555 0.0671 0.0060 0.0602 0.0037 1.0173 0.1236 0.0156 0.2055 0.2721 0.0760 0.0015 0.0537 0.0029 1.0016 0.1145 0.0131 0.2821 0.2812 0.0801 

0.4 -0.0012 0.0484 0.0023 1.0177 0.1283 0.0168 0.3573 0.2255 0.0527 0.0015 0.0482 0.0023 1.0266 0.1252 0.0164 0.3780 0.2220 0.0498 -0.0045 0.0439 0.0020 0.9765 0.1241 0.0160 0.4958 0.3550 0.1352 

0.6 -0.0012 0.0334 0.0011 1.0086 0.1256 0.0159 0.5817 0.1385 0.0195 -0.0016 0.0349 0.0012 1.0165 0.1246 0.0158 0.5809 0.1491 0.0226 0.0158 0.0316 0.0012 0.9523 0.1283 0.0187 0.8337 0.3611 0.1851 

0.9 -0.0006 0.0196 0.0004 1.0255 0.1335 0.0185 0.8947 0.0424 0.0018 0.0008 0.0193 0.0004 1.0492 0.2619 0.0710 0.8760 0.0753 0.0062 -0.1647 0.1107 0.0394 0.6551 0.1225 0.1341 1.9452 0.5977 1.4507 

Note: ݊ ൌ 100 and݊ ൌ 400. Simulations are based on both a queen contiguity-based Wq matrix and a regular square lattice grid. The number of replications is equal to 1,000. 
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Table 1b: Means, Standard Deviations, MSEs of θ=(β₀, β₁,ρ) for the ML, the GMM, and the LGMM Estimators (continued) 

 ML GMM LGMM 

n=
1,

60
0 

ρ µ(β₀) sd(β₀) mse(β₀) µ(β₁) sd(β₁) mse(β₁) µ(ρ) sd(ρ) mse(ρ) µ(β₀) sd(β₀) mse(β₀) µ(β₁) sd(β₁) mse(β₁) µ(ρ) sd(ρ) mse(ρ) µ(β₀) sd(β₀) mse(β₀) µ(β₁) sd(β₁) mse(β₁) µ(ρ) sd(ρ) mse(ρ) 

-0.9 0.0011 0.0646 0.0042 0.9990 0.0666 0.0044 -0.8617 0.1319 0.0189 -0.0056 0.0756 0.0057 1.0055 0.0627 0.0040 -0.8882 0.2163 0.0469 -0.0048 0.0572 0.0033 0.9488 0.0610 0.0064 -0.7300 0.1765 0.0601 

-0.6 -0.0113 0.0556 0.0032 1.0009 0.0592 0.0035 -0.5695 0.1968 0.0397 0.0055 0.0580 0.0034 1.0047 0.0604 0.0037 -0.6025 0.2050 0.0420 -0.0039 0.0497 0.0025 0.9808 0.0654 0.0046 -0.5200 0.1766 0.0376 

-0.4 -0.0023 0.0476 0.0023 1.0011 0.0607 0.0037 -0.4092 0.1850 0.0343 0.0038 0.0493 0.0024 1.0023 0.0579 0.0034 -0.4093 0.2050 0.0421 0.0036 0.0476 0.0023 0.9914 0.0585 0.0035 -0.3643 0.1520 0.0244 

-0.25 0.0015 0.0418 0.0017 1.0030 0.0582 0.0034 -0.2476 0.1906 0.0363 -0.0002 0.0439 0.0019 1.0095 0.0552 0.0031 -0.2438 0.1831 0.0336 -0.0044 0.0404 0.0017 0.9970 0.0582 0.0034 -0.2581 0.1909 0.0365 

-0.1 0.0030 0.0388 0.0015 1.0059 0.0617 0.0038 -0.1087 0.1688 0.0286 0.0021 0.0397 0.0016 1.0026 0.0648 0.0042 -0.1187 0.1725 0.0301 -0.0001 0.0345 0.0012 0.9994 0.0604 0.0037 -0.0832 0.1564 0.0248 

0 -0.0011 0.0332 0.0011 1.0106 0.0608 0.0038 0.0006 0.1467 0.0215 0.0030 0.0351 0.0012 1.0055 0.0624 0.0039 -0.0089 0.1515 0.0230 -0.0029 0.0348 0.0012 1.0012 0.0618 0.0038 0.0167 0.1742 0.0306 

0.1 0.0001 0.0315 0.0010 1.0012 0.0599 0.0036 0.1062 0.1448 0.0210 -0.0011 0.0276 0.0008 1.0033 0.0581 0.0034 0.0798 0.1537 0.0240 0.0008 0.0298 0.0009 1.0029 0.0601 0.0036 0.0967 0.1569 0.0246 

0.25 0.0015 0.0257 0.0007 1.0044 0.0607 0.0037 0.2416 0.1268 0.0161 -0.0008 0.0261 0.0007 1.0052 0.0572 0.0033 0.2321 0.1354 0.0187 0.0011 0.0254 0.0006 0.9899 0.0564 0.0033 0.2804 0.1574 0.0257 

0.4 -0.0005 0.0209 0.0004 1.0061 0.0641 0.0041 0.3913 0.1096 0.0121 -0.0014 0.0205 0.0004 1.0053 0.0666 0.0045 0.3925 0.1157 0.0134 -0.0019 0.0174 0.0003 0.9795 0.0599 0.0040 0.4835 0.1555 0.0312 

0.6 -0.0003 0.0163 0.0003 1.0037 0.0578 0.0034 0.5954 0.0688 0.0048 -0.0004 0.0157 0.0002 1.0067 0.0622 0.0039 0.5917 0.0762 0.0059 0.0012 0.0079 0.0001 0.9402 0.0560 0.0067 0.8543 0.1821 0.0980 

0.9 -0.0003 0.0054 0.0000 1.0093 0.0645 0.0042 0.8990 0.0164 0.0003 -0.0009 0.0102 0.0001 1.0298 0.1210 0.0155 0.8944 0.0398 0.0016 -0.1581 0.0442 0.0270 0.7056 0.0567 0.0902 1.9623 0.2486 1.1940 

Note: ݊ ൌ 1,600. Simulations are based on both a queen-contiguity Wq matrix and a regular square lattice grid. The number of replications is equal to 300. 
 


