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Abstract: Regional scientists frequently work with regression relationships involving sample data that is spatial in 
nature. For example, hedonic house-price regressions relate selling prices of houses located at points in space to 
characteristics of the homes as well as neighborhood characteristics. Migration, commodity, and transportation flow 
models relate the size of flows between origin and destination regions to the distance between origin and destination 
as well as characteristics of both origin and destination regions. Regional growth regressions relate growth rates of a 
region to past period own- and nearby-region resource inputs used in production. Spatial data typically violates the 
assumption that each observation is independent of other observations made by ordinary regression methods. This 
has econometric implications for the quality of estimates and inferences drawn from nonspatial regression models. 
Alternative methods for producing point estimates and drawing inferences for relationships involving spatial data 
samples comprise the broad topic covered by spatial econometrics. Like any subdiscipline, spatial econometrics has 
its quirks, many of which reflect influential past literature that has gained attention in both theoretical and applied 
work. This article asks the question: “What should regional scientists who wish to use regression relationships 
involving spatial data in an effort to shed light on questions of interest in regional science know about spatial 
econometric methods?” 
Keywords: spatial regression models, local versus global spatial spillovers, spatial Durbin and spatial Durbin error 
model specifications, spatial weight matrices, model comparison 
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1. INTRODUCTION 

There has been an increasing number of spatial regression estimation methodologies 
proposed in the spatial econometrics literature, maximum likelihood, quasi-maximum likelihood, 
GMM, IV, Bayesian, maximum entropy, robust GMM, robust Bayesian, semiparametric, along 
with static and dynamic panel extensions, and variants for dealing with count data, truncated and 
limited dependent variables to mention a few. In addition to different estimation methods, there 
are a host of newly proposed specifications (the matrix exponential, Shiller smooth priors, 
hierarchical linear models, smooth transition autoregressive), which in conjunction with the 
plethora of estimation procedures provides a great deal of flexibility for applied modeling 
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situations. There is also a growing literature on statistical testing in spatial econometrics, with 
tests of alternative specifications, Monte Carlo studies that compare performance of alternative 
specifications and estimation procedures, panel data model tests, tests for alternative spatial 
weight matrices, and tests for spatial dependence in disturbances, dependent and explanatory 
variables.  

For the typical regional science practitioner the task of sorting through this literature is a 
daunting prospect. The thesis of this presentation is that there are a few principles that can guide 
regional science practitioners through the haze of spatial econometrics, and shine light on 
estimation methods and specifications that should be most useful for regional science research. 
The remainder of the paper is organized into sections, each discussing one of the guiding 
principles. 

2. PRINCIPLE 1: LOCAL VERSUS GLOBAL SPILLOVER SPECIFICATIONS 

An oft-quoted statement is that “all politics is local,” which is meant to imply that 
national congressional representatives react most strongly to issues of concern to local 
constituents.1 A similar statement could be applied to spatial regression models, taking the form: 
“most spatial spillovers are local.” A major focus of regional science is spatial spillovers. The 
good news is that spatial regression models can be used to: 1) formally define the concept of a 
spatial spillover, 2) provide estimates of the quantitative magnitude of spillovers, and 3) test for 
the statistical significance of these (e.g., are the spillovers statistically significantly different 
from zero). The bad news is that for a host of historical reasons, most regional science 
applications of spatial regression models have not: 1) used an appropriate spatial regression 
specification to produce valid estimates of spatial spillovers, 2) correctly interpreted estimates of 
spillovers, or 3) produced valid inferences regarding the statistical significance of spillovers.  

A (spatial) spillover arises when a causal relationship between the ݎth characteristic/action 
of the ݅th entity/agent ( ௜ܺ

௥) located at position ݅ in space exerts a significant influence on the 
outcomes/decisions/actions (ݕ௝) of an agent/entity located at position	݆. In the context of a spatial 
regression relationship where ݕ௝, ݆ ൌ 1,… , ݊ is a vector of outcomes/decisions/actions of an 
agent/entity located in region/location ݆, and ܺ is a matrix of ݇ characteristics/actions of all ݊ 
regions/entities/agents, a formal definition would be: ߲ݕ௝/߲ ௜ܺ

௥ ് 0, which implies a 
spillover/impact from the ݎth characteristic/action of region/agent/entity ݅ that impacts the 
outcome/decision/action in region ݆.  

If the nonzero cross-partial derivative implies an impact on neighboring 
locations/regions that do not involve endogenous feedback effects, then we have a local spatial 
spillover. We note that neighboring regions can be (geographically) located nearby or far away, 
and that region ݆ can have more than one neighbor, so ݅ ∈ ࣨ, where ࣨ denotes the set of 
neighbors. In most applied regional modeling situations we know from substantive (or 
theoretical) aspects of the problem that a local spillover specification is the appropriate one. 
Examples include: state border crossing by social assistance program participants, cross-border 
shopping by cigarette smokers to avoid higher state cigarette taxes, and crossing school district 
boundaries by homeowners. A key facet of local spillovers is that endogenous interaction and 
feedback effects are not present. Endogenous interaction leads to a scenario where changes in 

                                                 
1
According to Wikipedia, this statement has been attributed to Tip O’Neil, former speaker of the U.S. House of Representatives. 
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one region/agent/entity set in motion a sequence of adjustments in (potentially) all regions in the 
sample such that a new long-run steady state equilibrium arises. Local spillovers do not produce 
this type of endogenous interaction outcome. For the examples given, local spillovers seem a 
more plausible specification if we believe that someone receiving public assistance might move 
from Ohio to a bordering state to maximize social assistance payments, or that smokers could 
regularly shop in bordering states to avoid higher state cigarette taxes. These actions do not cause 
further spillovers from these bordering states to their neighbors, however. We are often 
interested in the magnitude and significance of local spillovers as they pertain to the relationships 
we study, and fortunately these are easy to model and estimates of the spillover magnitudes are 
simple to interpret. Nonspatial regression specifications that exclude these from a model 
specification lead to estimates that suffer from omitted variables bias.  

If the nonzero cross-partial derivative implies an impact on neighboring regions, plus 
neighbors to the neighboring regions, neighbors to the neighbors, and so on, then we have a 
global spatial spillover scenario. Formally, if locations ݆ include not only neighbors to ݅, but 
neighbors to the neighbors of ݅, neighbors to the neighbors of the neighbors to ݅, and so on, we 
have a global spillover scenario. A key facet of global spillovers is that endogenous interaction 
and feedback effects are present. Endogenous interaction leads to a scenario where changes in 
one region/agent/entity set in motion a sequence of adjustments in (potentially) all regions in the 
sample such that a new long-run steady state equilibrium arises. For example, if it seems 
plausible that changes in levels of public assistance (cigarette taxes) in state ܣ would lead to a 
reaction by neighboring states ܤ to change their levels of assistance (taxes), which in turn 
produce a game-theoretic (feedback) response of state ܣ, and also responses of states ܥ who are 
neighbors to neighboring states ܤ, and so on, then a global spillover specification is most 
appropriate. A resource shared by numerous regions such as a highway (or river) can be one 
cause of global spillovers. Congestion (or pollution) on a highway/river segment passing through 
one region can produce impacts on all other regions through which the highway/river passes. 
These impacts might evoke feedback or endogenous interaction effects whereby commuters 
change their behavior in response to congestion, regional authorities react to pollution from 
neighbors, and so on. These feedback reactions will have an impact on the expected long-run 
steady state for the relationship being studied. Networks (airline, computer, trade, transportation, 
academic collaboration, etc.) represent one situation that may involve global spillovers, since 
impacts fall on many nodes of the network. Over time, actors located in network nodes adjust to 
this global nature of spillovers which likely changes the expected long-run steady state 
relationship.  

Global spillover phenomena should be rarer than local spillovers in applied regional 
science modeling situations, hence the statement: “most spatial spillovers are local.” Despite the 
fact that global spillover situations are likely rare, the spatial regression specifications most 
commonly used in the applied regional science literature are those associated with global 
spillovers, not local. Global spillover specifications are more difficult to estimate and correct 
interpretation of estimates from these specifications is more difficult. Because of the interesting 
theoretical econometric aspects of these specifications, they represent those most studied in the 
spatial econometrics literature. Still, this does not mean they should be those most frequently 
used by regional science practitioners.  
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2.1 Local spillover specifications 

Two local spatial spillover specifications are the spatial lag of ܺ model (SLX) in (1) and 
spatial Durbin error model (SDEM) shown in (2).  
 

ݕ (1) ൌ ଵߚܺ ൅ܹܺߚଶ ൅  ߝ

ݕ (2) ൌ ଵߚܺ ൅ܹܺߚଶ ൅ ݑ
ݑ ൌ ݑܹߣ ൅  ߝ
ߝ ∼ ܰሺ0, ఌߪ

ଶܫேሻ 

These models allow for local spillovers to neighboring observations through spatial lag terms for 
the explanatory variables: ܹܺ. A spatial lag consists of a matrix product such as ܹܺ,ܹݕ, which 
forms a linear combination of values from the matrix ܺ or vector ݕ, reflecting neighboring 
region values. In the simplest case, an average of neighboring independent or dependent variable 
values could be used. The matrix ܹ is of dimension ݊ ൈ ݊, where ݊ is the number of 
observations, and each observation represents a region (or location). Non-zero elements in the ݅, ݆ 
row and column positions of the matrix ܹ indicate that region/observation ݆ is a neighbor to ݅. 
Main diagonal elements are zero, and rows are normalized so that elements of each row sum to 
unity.  

If we consider the partial derivatives, own-region partial derivatives ߲ݕ௜/߲ ௜ܺ
௞ ൌ  ,ଵߚ

while cross-partial derivatives that reflect the local nature of spatial spillovers to only 
neighboring regions are ߲ݕ௜/߲ ௝ܺ

௞ ൌ  ଶ. Since the main diagonal elements of ܹ are zero andߚܹ
the row-sums are unity, we can interpret the coefficient ߚଶ as the (cumulative) cross-partial 
derivative (or indirect effect). By cumulative we mean that the coefficient ߚଶ denotes the sum of 
spillovers falling on all neighbors. Like all regression coefficients, ߚଶ reflects average or typical 
spillovers, where averaging takes place over all observations (regions). This makes these models 
easy to interpret relative to the global spillover models. For the case of the SLX model, least-
squares coefficient estimates for ߚଵ,  statistics can-ݐ ଶ along with measures of dispersion such asߚ
be used to produce inferences regarding the magnitude and significance of direct (own-region, 
 impacts, so standard regression software can be (ଶߚ ,other-region, spillover) ଵ) and indirectߚ
used to estimate the SLX model. LeSage and Pace (2009) argue that cross-sectional versions of 
these models have received too little attention in applied work by regional scientists.  

For the case of the SDEM model, a spatial autoregressive specification is used for the 
disturbances, which allows for global diffusion of shocks to the model disturbances. To avoid 
confusion of terminology, we do not refer to these as spillovers. To see that we have global 
impacts arising from shocks to the disturbances, note that: ݑ ൌ ሺܫ௡ െ  which can be ,ߝሻିଵܹߣ
expressed as: ݑ ൌ ሺܫ௡ ൅ ܹߣ ൅ ଶܹଶߣ ൅ ଷܹଷߣ ൅⋯ሻߝ. A change in the disturbance of a single 
region can produce impacts on disturbances of neighboring regions ߝܹߣ, neighbors to the 
neighboring regions, ߣଶܹଶߝ, and so on. Because the scalar parameter ߣ ൏ 1, impacts decay with 
order of neighbors, so higher-order neighbors (e.g., neighbors to neighbors) receive less impact.  

An econometric point is that regression estimates of ߚଵ,  ଶ from the SLX model shouldߚ
be unbiased even when the true model is SDEM, since spatial dependence in the disturbances 
represents only an efficiency problem. A related point is that the partial derivatives with respect 
to the explanatory variables are the same for both models, but specialized software would be 
required to produce estimates (and valid ݐ-statistics) for the SDEM specification.  
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It should be noted that neighboring regions/observations might be defined as those 
located far away in terms of geographical space. An example that uses the SDEM model is 
LeSage and Ha (2012), who study the impact of migration on county-level social capital. Their 
SDEM model takes the form in (3), where ௡ܹ and ௙ܹ represent migration-weighted spatial 
weight matrices. The matrix ௡ܹ identifies neighboring counties within 40 miles and assigns 
relative weights to these based on in-migration magnitudes. The matrix ௙ܹ identifies 
neighboring counties more than 40 miles away from each county that provide in-migration to 
each county ݅ in the sample, and weights these according to in-migration magnitudes. The matrix 
ܸ used to model dependence in the model disturbances was a spatial contiguity weight matrix, 
with equal weights assigned to all contiguous counties.  

ݕ (3) ൌ ߚܺ ൅ ௡ܹܺߠ ൅ ௙ܹܺߛ ൅  ݑ
ݑ ൌ ݑܸߩ ൅  ߝ

Pace and Zhu (2012) point out that a desirable aspect of the model in (3) is that 
dependence in the disturbances is modeled separately from spillovers. This means that 
misspecification of the spatial dependence structure in the model disturbances will not 
contaminate estimates (ߚ, ,ߠ  from the mean part of the model. The SDEM model in (3) allows (ߛ
separation of the (local) spillover impacts on county-level social capital levels arising from 
changes in population characteristics of nearby counties (providing in-migrants to each county in 
the sample) versus that arising from changes in population characteristics of far away (outside 
the region) counties (providing in-migrants to each county). For example, how do changes in 
educational attainment levels of population in counties within the region versus counties outside 
the region (providing in-migrants to each county) impact levels of social capital in the typical 
county? Are there important differences in the magnitude of impact associated with in-migration 
from within and outside the region? Are some changes in characteristics of in-migrants from 
nearby counties significant/insignificant while the same characteristics of in-migrants from 
outside the region are insignificant/significant?  

By way of conclusion, we note that although the term local spillovers could be used to 
characterize the model in (3), this does not necessarily rule out consideration of spillover impacts 
involving great distances, since practitioners can try variants of individual ܹ with different 
bandwidths to capture longer range dependencies. Therefore, practitioners of spatial regression 
models should spend time thinking about whether the phenomena being modeled are likely to 
produce local or global spillovers.  

2.2 Global spillover specifications 

The spatial Durbin model (SDM) is a global spillover specification, taking the form 
shown in (4).  

ݕ (4) ൌ ݕܹߩ ൅ ௡ߡߙ ൅ ଵߚܺ ൅ܹܺߚଶ ൅  ߝ

This model includes a spatial lag vector ܹݕ representing a linear combination of values 
of the dependent variable vector from neighboring observations, as well as a matrix of own-
region characteristics ܺ, and a matrix of characteristics of neighboring regions (ܹܺ) as 
additional explanatory variables. An example would be a model where ݕ represents a cross-
section of metropolitan area census tract commuting times, and ܺ population characteristics of 
the tracts. The motivation for global spillovers in this setting is that commuting time congestion 
spillovers arise from shared roadways that traverse census tracts. Commuters are likely to react 



18                                                                                           The Review of Regional Studies 44(1)  

© Southern Regional Science Association 2014. 
 

to congestion over time and change their behavior, reflecting endogenous interaction effects. 
Direct and indirect effects for the SDM model shown in (4) for the ݎth explanatory variable in the 
matrix ܺ, are given by the matrix partial derivative expression in (5).  

௥߲ܺ/ݕ߲ (5)
ᇱ ൌ ሺܫ௡ െ ଵߚ௡ܫሻିଵሺܹߩ

௥ ൅ܹߚଶ
௥ሻ 

The presence of global spillovers can be seen by recognizing that: ሺܫ௡ െ ሻିଵܹߩ ൌ ௡ܫ ൅
ܹߩ ൅ ଶܹଶߩ ൅⋯ . This means that we have an ݊ ൈ ݊ matrix of partial derivatives associated 
with a change in each of the explanatory variables. LeSage and Pace (2009) proposed using an 
average of the main diagonal elements of this matrix as a scalar summary measure of the own-
partial derivatives (߲ݕ௜/߲ ௜ܺ

௞) which they label direct effects. An average of the cumulative sum 
of off-diagonal elements reflecting cross-partial derivatives (߲ݕ௝/߲ ௜ܺ

௞) provides a scalar 
summary measure of spillovers which they label indirect effects.  

A literal interpretation of the partial derivatives from a cross-sectional model such as the 
SDM would be that the cross-partial derivative impacts on neighboring regions (indirect effects 
or spillovers) arise simultaneously. Intuitively, such impact should take time, yet there is no 
explicit role for time in a cross-sectional setting. Because of this, LeSage and Pace (2009) argue 
that spillovers in the context of (cross-sectional) spatial regression models should be interpreted 
as comparative static changes that will arise in the dependent variable (as a result of changes in 
the explanatory variables) as the relationship under study moves to a new steady-state 
equilibrium. Cross-sectional observations could be viewed as reflecting a (comparative static) 
slice at one point in time of a long-run steady-state equilibrium relationship, and the partial 
derivatives viewed as reflecting a comparative static analysis of changes that represent new 
steady-state relationships that would arise.  

In contrast to the case of the SLX local spillover specification, the SDM and SDEM 
specifications require specialized software to produce valid estimates. Software algorithms 
developed for estimating spatial error dependence models (commonly labeled SEM) can be used 
with the addition of spatial lags of the explanatory variables (ܹܺ) for the case of the SDEM 
specification. Estimates of the direct and indirect effects can be based on coefficients ߚଵ,  ଶ fromߚ
(2), and associated ݐ-statistics can be used for inference.  

In the case of the SDM specification, the direct and indirect effects associated with each 
explanatory variable and valid ݐ-statistics are produced by numerous software programs 
available for estimating spatial regression models involving spatial lags of the dependent 
variable. These routines calculate and report direct and indirect effects estimates along with ݐ-
statistics that allow for statistical tests of significance of the direct and indirect or spillover 
effects associated with each explanatory variable. MATLAB and R-language programs are 
available as well as a Stata module.2  

2.3 Between local and global spillover specifications 

The distinction drawn between local and global spillover specifications is somewhat 
artificial, since it suggests that local spillovers involve only neighbors, but not higher-order 
neighbors (neighbors to the neighbors, neighbors to the neighbors of the neighbors, and so on 

                                                 
2 MATLAB functions for spatial econometric analysis are at: www.spatial-econometrics.com, an R-language package by Roger 
Bivand (spdep), a Stata module, SPPACK for cross-section spatial-autoregressive models, by David M. Drukker, Hua Peng, 
Ingmar Prucha, and Rafal Raciborski. 
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represent higher-order neighbors).3 What about a situation where first- and second-order 
neighbors are involved, that is neighbors plus neighbors to the neighbors? Is this a local or global 
specification? According to the definition used here, it is neither!  

Making a distinction that rules out a host of specifications that differ slightly in terms of 
the order of included neighbors may serve a useful purpose. Without large samples containing 
sample data information collected at a very fine spatial scale, it should be very difficult to 
statistically distinguish between slightly different specifications. It should also be difficult to 
draw inferences regarding the magnitude of decay of influence over space or distance without 
data containing such detail. One advantage of maintaining the somewhat artificial distinction is 
that it makes empirical tests for local versus global specifications easier (as we will see later). 
LeSage and Pace (2010) show that in the case of a global SDM specification, the model produces 
similar estimates, inferences and predictions for similar (e.g., 6 vs. 8 nearest neighbors) weight 
matrices. An implication of this is that empirical tests of alternative specifications will not work 
well, since these are based on measures of model fit involving the (similar) predictions. In 
applied work, we simply have to recognize the limitations of our models.  

Given situations where sample data information is weak regarding slightly different 
spatial weight matrix specifications, a Bayesian approach provides one way to introduce 
subjective prior information regarding this aspect of the problem. Han and Lee (2013) set forth a 
Bayesian approach to estimating SDEM models that include varying orders of neighbors, but 
rely on Shiller smoothness priors to impose a stochastic structure of decay on the coefficients 
associated higher-order neighbors. They also set forth formal Bayesian model comparison 
methods that calculate posterior model probabilities based on log-marginal likelihoods.  

3. PRINCIPLE 2: THERE ARE ONLY TWO MODEL SPECIFICATIONS WORTH 
CONSIDERING FOR APPLIED WORK 

One obstacle confronting regional scientists who attempt to use spatial econometric 
methods is the plethora of alternative model specifications discussed in the literature. The family 
of models that have been labeled SAR, SDM, SEM, and SAC were popularized by the Anselin 
(1988) text, and a great deal of the literature on statistical testing of alternative model 
specifications has built on this family of models.  

If one can narrow down the relationship being investigated as reflecting a local spillover 
situation, then the SDEM model is the only model one needs to estimate. This specification 
subsumes the SLX and SEM specifications as special cases. To see this, consider that the SDEM 
specification in (6) collapses to the SLX when ߣ ൌ 0 and there is no spatial dependence in the 
disturbances. The SDEM specification collapses to the SEM specification when ߚଶ ൌ 0 and there 
are no (local) spatial spillovers. When both ߣ ൌ 0 and ߚଶ ൌ 0, we have an ordinary non-spatial 
regression model.  

ݕ (6) ൌ ଵߚܺ ൅ܹܺߚଶ ൅ ݑ
ݑ ൌ ݑܹߣ ൅  ߝ

 

                                                 
3
Remember that neighbors need not be defined as only regions in close physical proximity, as noted in the discussion 

surrounding Equation (3). 
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For the case where a global spillover specification is implied by theoretical or substantive 
aspects of the problem, one need only estimate an SDM specification. It is not difficult to argue 
that the SDM specification in (7) subsumes the SAR as a special case when ߚଶ ൌ 0.  

ݕ (7) ൌ ݕܹߩ ൅ ௡ߡߙ ൅ ߚܺ ൅ܹܺߚଶ ൅  ߝ

Nevertheless, a specification that seems particularly appealing to the novice spatial 
econometrician is the SAC (spatial autoregressive combination) model shown in (8). This 
specification has been explored in numerous theoretical spatial econometrics articles. From a 
theoretical viewpoint, it poses the greatest problems for estimation and inference, making it an 
attractive subject for theoretical econometric research. An interesting question is: what is the 
intuitive appeal of this specification to novice practitioners?  

ݕ (8) ൌ ݕܹߩ ൅ ௡ߡߙ ൅ ߚܺ ൅ ݑ
ݑ ൌ ݑܹߣ ൅  ߝ

I believe the answer lies in confusion about what the specification represents. A first point to 
note is that this specification involves two spatial dependence parameters, ߩ and ߣ. The 
additional spatial dependence parameter adds to the costs and complexity of estimation for this 
type of model. We should ask: do the marginal benefits associated with this specification justify 
the marginal costs?  

One possible benefit from the SAC specification would be added precision (increased 
efficiency) that would arise in cases where the model disturbances exhibit spatial dependence. 
Ignoring spatial dependence in the disturbances has consequences similar to those arising from 
serial correlation in the errors. Adjusting for spatial dependence in the disturbances will produce 
more accurate ݐ-statistics used for inference regarding the effects on the dependent variable ݕ 
arising from changes in model explanatory variables, ܺ. However, the SAC specification 
imposes a severe restriction on the partial derivatives, which take the form: ߲ݕ/߲ܺ௥

ᇱ ൌ ሺܫ௡ െ
ଵߚ௡ܫሻିଵܹߩ

௥. The scalar summary measures for all explanatory variables (ݎ ൌ 1,… , ܴ) based on 
the own- and cross-partial derivatives reflect the same relative relationship. That is, if 
explanatory variable ଵܺ has a direct effect of 1.0 and indirect effect of 0.5, then explanatory 
variable ܺଶ must also have a direct effect that is twice that of the indirect effect, as do all other 
explanatory variables (see Elhorst, 2010). Needless to say, this is an extremely restrictive aspect 
of the both the SAR as well as SAC specifications, which should make them relatively 
unattractive compared to the SDM and SDEM specifications for use in applied situations.4  

A second perceived benefit derives from some confusion regarding the SAC 
specification. At first glance, the specification appears to represent a mixture or combination of 
both spatial dependence in the dependent variable reflected in ܹݕ and spatial dependence in the 
disturbances represented by ܹݑ. This leads to the misconception that the SAC reflects a more 
general model specification than SAR or SEM, and, generality is often perceived to have 
advantages in econometrics. A more formal examination of what specification arises from a 
mixture of specifications reflecting spatial dependence in the dependent variable and dependence 
in the disturbances is provided by LeSage and Pace (2009, p. 31). They show what arises if we 
form a linear combination of the SAR and SEM specifications reflecting spatial dependence in 

                                                 
4 The SDM and SDEM are more general because a separate  is estimated for the own and lagged values for each independent 
variable. 
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the dependent variable and disturbances, respectively. Let ߨ௔ ൅ ௕ߨ ൌ 1, and use these weights to 
form a linear combination of the SAR and SEM data generating processes as shown in (9).  

௖ݕ (9) ൌ ௔ݕ௔ߨ ൅  ௕ݕ௕ߨ

௔ݕ (10) ൌ ሺܫ௡ െ ߚሻିଵሺܹܺߩ ൅  ሻߝ

௕ݕ (11) ൌ ߚܺ ൅ ሺܫ௡ െ  ߝሻିଵܹߩ

௖ݕ (12) ൌ ௖ݕܹߩ ൅ ଵߚܺ ൅ܹܺߚଶ ൅  ߝ

The resulting specification shown in (12) is that of the SDM. In addition to this misconception 
regarding what the SAC specification represents, there are a number of other drawbacks to its 
use in applied practice that are often overlooked.  

Another cost associated with using a two-parameter specification for spatial dependence 
is that misspecification in one part of the model can contaminate estimates from the other part. 
Pace and Zhu (2012) describe models that separate the spatial process assigned to govern the 
mean part of the model from that used in the disturbance specification. They argue that this 
approach provides some protection against misspecification in one part of the model 
contaminating estimates from other parts. The data-generating processes for the SAC model 
represents a situation where the same spatial autoregressive process ሺܫ௡ െ  ሻିଵ is assigned toܹߩ
both the mean model (ܺߚ) as well as the disturbances ߝ, based on ሺܫ௡ െ  ሻିଵ. This aspect ofܹߣ
these models means that misspecification of the disturbances can produce undesirable impacts on 
estimates for the mean model which is likely the focus of inference.  

By way of conclusion, one should consider the costs versus benefits from adopting a two-
parameter specification such as the SAC over alternative one-parameter specifications such as 
SDM, SDEM, SLX, SAR and SEM. Practitioners should also be aware that alternative two-
parameter specifications exist that may have better benefit-cost ratios (Pace and Zhu 2012).  

3.1  Testing the two model specifications 

There are relationships we explore in regional science where the distinction between 
global and local spillovers is not obvious. Consider the case of state-level cigarette demand, with 
a well-know model from the second edition of Baltagi’s (2001) textbook on panel data 
econometrics. State-level demand for cigarettes is modeled using a panel of information on: a 
dependent variable measuring demand for cigarettes (real per capita sales of cigarettes by 
persons of smoking age (14 years and older), and explanatory variables: the average retail price 
of a pack of cigarettes measured in real terms, real per capita disposable income, and the 
minimum real price of cigarettes in any neighboring state. The minimum price in neighboring 
states is a proxy for local spillover effects that arise when consumers engage in casual smuggling 
(shop across state borders to take advantage of lower taxes in neighboring states). This variable 
(say ୫ܲ୧୬) can be written as ܹ ୫ܲ୧୬, where the matrix ܹ contains a value of one (in each row) 
for the neighboring state with the minimum price. (We could extend the model specification 
using a matrix ܹ that forms a linear combination of all neighboring states whose cigarette taxes 
are below those of state ݅, or we could include a linear combination of real per capita disposable 
income of residents from neighboring states, retail prices of cigarettes from neighboring states, 
etc. )  

This would seem to be an example of local spatial spillovers, since it is an argument that 
explanatory variable characteristics of only a single neighboring region (that with contiguous 
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borders and the minimum tax on cigarettes) should exert an impact on the outcome variable 
(demand for cigarettes). It might seem difficult to envision a global spillover specification as 
appropriate for this type of phenomena.  

Still, commercial smuggling network activity could produce global spatial spillovers. 
Low tax states such as North Carolina and Kentucky may be a source of illegal exports to many 
states as a result of deliberate endogenous interaction by smugglers. Commercial smugglers 
would obviously react to state-level excise taxes. LaFaive and Nesbit (2010, 2013a, 2013b) claim 
that (over the 1990 to 2006 period) the states with the top five average smuggling import rates as 
a percentage of their total estimated in-state cigarette consumption, including both legally and 
illegally purchased cigarettes, were California (24.5 percent of the state’s total cigarette 
consumption), New York (20.9 percent), Arizona (20.6 percent), Washington state (20.1 
percent), and Michigan (16.0 percent). They claim that commercial smuggling import rates were 
highest in New Jersey (13.8 percent), Massachusetts (12.7 percent), and Rhode Island (12.7 
percent) and that casual smuggling import rates were highest in New York (9.9 percent), 
Washington (8.9 percent), and Michigan (6.0 percent).  

The possibility that both casual and commercial smuggling are at work suggests that this 
may be a case where formal model comparison tests would be useful in distinguishing between a 
local versus global specification. There are likely many other situations where regional scientists 
are interested in testing whether endogenous interaction is present or absent. For example, are 
local governments engaged in tax or services provision competition with neighboring 
governments? Or, do differences in tax and service provision by local governments simply result 
in a local spillover phenomena? The former situation suggests a global spillover specification 
(SDM), while the latter implies a local spillover (SDEM) specification. Effective statistical tests 
should be useful in these circumstances.  

3.2 Testing even two specifications can be tricky 

Given only the SDEM versus SDM specifications, consider a case where the true model 
that generated the data is the SDM in (14), but the SDEM specification in (13) is estimated.  

ݕ (13) ൌ ଵߚܺ ൅ܹܺߚଶ ൅  ݑ
ݑ ൌ ݑܹߣ ൅  ߝ

ݕ (14) ൌ ݕܹߩ ൅ ௡ߡߙ ൅ ߚܺ ൅ܹܺߚଶ ൅  ߝ

In the absence of a spatial lag of the dependent variable in the estimated SDEM specification, 
spatial dependence from the dependent variable will land in the disturbances, likely producing a 
significant coefficient estimate for ߣ that might be similar in magnitude to the true value of ߩ. 
Similarly, in the converse scenario where the SDEM in (13) is the true data-generating process, 
but the SDM specification is estimated, since the SDM specification does not accommodate 
dependence in the disturbances, we might expect to see estimates of ߩ similar in magnitude to 
the true value of ߣ from the DGP.  

A practical implication is that practitioners cannot simply estimate an SDM and SDEM 
model and draw meaningful conclusions about the correct model specification from point 
estimates of ߩ or ߣ. This has raised a serious debate in the spatial econometrics literature about 
identification of model parameters. In our case, we have seen that the SDM specification implies 
global spatial spillovers, while the SDEM is consistent with local spillovers. These have very 
different policy implications in applied work. LeSage (2014) shows that despite the difficult 
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circumstances facing comparison of SDM versus SDEM specifications, formal Bayesian model 
comparison methods can provide accurate answers regarding the appropriate specification.  

3.3 Why does Bayesian model comparison work well? 

Distinguishing between even SDM and SDEM specifications is complicated by the fact 
that both specifications collapse to the SLX specification: ݕ ൌ ଵߚܺ ൅ܹܺߚଶ ൅ ,ߩ when ,ߝ  ߣ
approach zero. Most of the spatial econometrics literature on comparing model specifications 
relies on likelihood ratio or Lagrange multiplier statistics. These involve evaluating the (log) 
likelihood function at maximum likelihood point estimates which produces a single scalar 
magnitude for two model specifications. A statistical test is then carried out to see whether one 
of the two scalars reflects a significantly better fit to the sample data for one of the two 
specifications.  

Of course, inferences regarding comparison of the two model specifications from this 
approach are conditional on the maximum likelihood estimates from the two specifications. And 
they assume one of the two specifications is true. When spatial dependence is weak however, the 
best fitting specification might be the SLX, which makes neither the SDM nor SDEM the true 
model.  

Bayesian model comparison takes a different approach, integrating out all model 
parameters to produce a log-marginal likelihood for each model specification. These are used to 
calculate model probabilities in favor of each specification. We can easily include three 
specifications, SLX, SDM and SDEM and produce model probabilities for all three. In cases of 
weak dependence evidenced by small values of ߩ or ߣ, posterior probabilities should approach ⅓ 
for each model, making it easy to interpret results from the model comparison exercise.  

One could (loosely) view likelihood ratio statistics as comparing the single modal values 
of the densities shown for both models, attempting to discern (statistically significant) 
differences between these scalar magnitudes. In contrast, Bayesian model comparison takes into 
account the entire profile of the density by (numerically) integrating over this final spatial 
dependence parameter for both models, and all other parameters are integrated out analytically. It 
should be clear that there is a great deal of information to be found regarding the curvature of the 
log-marginal likelihood from the two models by comparing the area under these two densities. 
This is in stark contrast to a model comparison method that focuses only on the single points 
reflecting the modal values of the two densities shown.  

As an illustration, Table 1 shows model probabilities for the SLX, SDM, and SDEM 
specifications produced using a panel data Monte Carlo experiment that systematically decreases 
the spatial dependence parameter ߩ towards zero. The panel data set contained 49 regions and 30 
time periods. It is relatively easy to interpret the model probabilities that favor the (true) SDM 
specification for levels of dependence greater than 0.1 in absolute value. For lower values of 
dependence, it becomes clear that one cannot draw a meaningful distinction between the three 
specifications. It would be far more difficult to arrive at this type of conclusion using likelihood 
ratio tests that rely on two-way comparisons of SDM versus SLX, SDEM versus SDM and 
SDEM versus SLX specifications.  
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4. PRINCIPLE 3: CONSIDER PERFORMANCE OF ESTIMATION PROCEDURES, 
NOT SIMPLY POINT ESTIMATES 

A spatial regression estimation procedure (e.g., Bayesian, IV, GMM, maximum 
likelihood, robust Bayesian, GMM-HAC, etc.) needs to produce not only point estimates of the 
underlying parameters (ߚ, ,ߩ  but other information as well. Specifically, 1) scalar summaries ,(ߣ
of the partial derivatives (labeled direct and indirect/spillover effects estimates) that show how 
changes in the explanatory variables impact the dependent variable, 2) estimates of dispersion 
for the underlying parameters that can be used for inference regarding the statistical significance 
of (underlying) parameters such as ߩ,  measuring spatial dependence, 3) estimates of dispersion ߣ
for the direct and indirect effects parameters that can be used for inference regarding the 
statistical significance of spillovers associated with different explanatory variables, and perhaps 
4) predictions (in- or out-of-sample) as well as measures of dispersion for these.  

4.1 Should we believe Monte Carlo studies? 

Surprisingly, almost all of the spatial econometric literature contains Monte Carlo 
experiments that explore performance of alternative estimation procedures focusing only on the 
mean-variance relationships of the point estimates for ߚ, ,ߩ  That is, they ignore performance of .ߣ
scalar summary effects estimates of the partial derivatives produced by alternative procedures. 
Since these effects estimates are those that regional scientists will use to learn about the 
relationship under study, the spatial econometric literature has little to offer practitioners.  

4.2 Point estimates versus estimation procedures 

An estimation procedure (such as robust Bayes, robust GMM, maximum likelihood) 
needs to produce not only point estimates, but also estimates of dispersion that can be used for 
inference regarding the point estimates. For example, if a proposed robust GMM procedure 
produces slightly better (less biased) point estimates versus slightly (more biased) robust Bayes, 
but dramatically inferior variance-covariance estimates (which are used for inference), then the 
proposed procedure might be considered inferior as an estimation procedure for producing 
estimates and inference in applied settings.  

Marginal or effects estimates and inferences for spatial regression models containing 
spatial lags of the dependent variable are produced by simulating thousands of parameters ߚ,  ߩ
from the estimated mean and variance-covariance matrix. Then using these in the nonlinear 
partial derivative relationship produces an empirical estimate of the mean and dispersion of the 
scalar summary effects estimates.  

Table 1. Monte Carlo results for ࣋, ࣅ → ૙,ࡺ ൌ ૝ૢ, ࢀ ൌ ૜૙ 

True SDM 
Operator, ρ 

 
Prob(SLX) 

 
Prob(SDM)  

 
Prob(SDEM)  

-0.1  0.0601 0.5451 0.3948  
-0.05  0.2290 0.3999 0.3711  
-0.01  0.3266 0.3470 0.3264  

-0.001  0.3268 0.3326 0.3406  
0  0.3389 0.3374 0.3237  

0.001  0.3485 0.3145 0.3370  
0.01  0.3436 0.3236 0.3328  
0.05  0.2209 0.3766 0.4025  
0.1  0.0633 0.5176 0.4191  
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4.3 Spatial econometric Monte Carlo studies: Raising the bar 

Monte Carlo studies typically perform some number of replications using the data 
generating process to produce say, 1,000 vectors ݕ based on randomly generated disturbances. 
Mean estimates of the parameters ߚ,  are reported from the 1,000 runs along with estimated ߩ
standard deviations for these parameters. The means and standard deviations are compared to the 
true values for the parameters ߚ,  along with the standard deviation in these outcomes, where ߩ
the true standard deviation is sometimes known and other times unknown. A superior estimation 
procedure is judged to be the one with the least bias (gap between the true ߚ,  and mean of the ߩ
1,000 estimates) and smallest variance in the 1,000 estimates of ߚ,   .ߩ

The focus of Monte Carlo studies on the estimates of ߚ,  is flawed, because the ߩ
inferences of practitioners will be based upon how the explanatory variables impact outcomes on 
their own and neighboring regions. Because the scalar summaries of the ݊ ൈ ݊ matrix of partial 
derivatives for each explanatory variable is a nonlinear function of the parameters ߚ,  the bias ,ߩ
and precision of the impacts can be very different from the bias and precision of the parameters 
,ߚ  .We will demonstrate this below .ߩ

For each of the 1,000 trials, estimated scalar summary direct, indirect and total effects 
(based on the ݊ ൈ ݊ matrix of nonlinear partial derivatives) should be stored, along with 
estimated empirical standard deviations based on the simulated parameters ߚ,  arising from the ߩ
point estimates and estimated variance-covariance matrix. Comparing the mean of the set of 
1,000 scalar summary effects estimates from alternative estimation procedures to the true effects 
estimates provides a measure of bias associated with the various procedures. Comparing the 
mean of the set of 1,000 empirical standard deviations across alternative estimation procedures 
provides a measure of relative efficiency of the alternative approaches.  

There are likely to be trade-offs between bias and efficiency. Decisions regarding these 
trade-offs require a loss function, with the mean squared error (MSE) criterion arising from a 
quadratic loss function. The MSE assesses the quality of an estimator in terms of its variation 
and degree of bias. ܧܵܯ ൌ varianceሺeffectsሻ ൅ biasሺeffectsሻଶ. Table 2 shows bias and MSE 
results from a Monte Carlo study of three estimation procedures for both the ߚ,  estimates ߩ
alongside bias and MSE results for the total effects estimates (direct + indirect effects = total 
effects). Of course, practitioners would draw conclusions about the relationship between ݕ and 
ݔ െvariables using the total effects estimates, not estimates of ߚ,   .ߩ

From results for parameters ߩ, ,ଵߚ  ଶ in the table (those typically reported in Monte Carloߚ
studies), Method 2 seems superior since it exhibits much smaller bias in estimates for these 
parameters, with a slightly larger MSE than Method 3. However, results based on the total 
effects estimates that would be used in applied practice make it clear that both Methods 1 and 3 
are far superior to method 2 in terms of total effects estimates.  

This should make it clear that past Monte Carlo studies comparing alternative estimation 
procedures are not very useful regarding performance that the typical practitioner will experience 
when using alternative methods. Spatial heteroscedastic autocorrelation consistent (SHAC) 
procedures provide one possible illustration of this issue (Kelejian and Prucha, 2007, Doğan and 
Taspinar, 2014). Excessive focus on (possibly small) bias arising from the presence of 
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Table 2. An Illustration of Trade-offs between Bias and Efficiency 

 Method 1 Method 2 Method 3 

 bias  MSE bias MSE bias MSE  
  0.0482  0.0333- 0.0502 0.0008- 0.0507  0.0350-  ߩ
  ଵ  0.0599  1.5914 0.0854 1.5602 0.0799 1.4401ߚ
  ଶ  -0.0801  1.5977 -0.0869 1.5685 -0.1470  1.4269ߚ

Total Effects       
  ଵ  -0.7455  14.6243 6.5850 82.8110 -0.7656  12.6486݈ܽݐ݋ܶ
  ଶ  -2.5610  14.1155 -5.9543 51.6293 -2.4481  12.2358݈ܽݐ݋ܶ

heteroscedastic disturbances has led to proposed alternative estimation procedures. These 
alternatives involve adjustments to the estimation procedure including formulas used to calculate 
variance-covariance estimates. The impact of adjustments to the variance-covariance matrix 
estimates on simulated parameter values used to construct empirical measures of dispersion for 
the direct, indirect and total effects estimates has gone unexplored. If changes in the estimated 
variance-covariance matrix lead to much larger dispersion in the simulated parameters and 
empirical estimates of dispersion, then the ability to draw meaningful inferences regarding 
statistical significance of direct and indirect effects estimates arising from changes in explanatory 
variables on the dependent variable outcomes may be dramatically altered by these alternative 
SHAC estimation procedures. Given that past Monte Carlo studies have not explored this issue 
by producing empirical estimates of dispersion for the effects estimates based on simulating 
parameters from the point estimates and (SHAC) variance-covariance matrix, we really have 
little idea about this important issue.5  

In fact, Table 2 results compare maximum likelihood (Method 1) to a SHAC (Method 2) 
and robust Bayesian (Method 3) for the case of heteroskedastic disturbances. As indicated in the 
discussion surrounding Table 2, results based on the conventionally reported estimates for the 
parameters ߩ,  appear to support benefits provided by the SHAC procedure, while results based ߚ
on the total effects estimates clearly contradict these conclusions. It should be noted that even 
conclusions regarding bias of the parameters ߚ,  cannot be trusted when it comes to bias of the ߩ
effects estimates, since upward (downward) bias in ߩ could be offset by downward (upward) bias 
in ߚ producing smaller bias in the effects estimates. This appears to be the case for the Table 2 
results.  

5. PRINCIPLE 4: AVOID THE TEMPTATION FOR OBSERVATION-LEVEL 
INFERENCE 

Given that partial derivatives for spatial econometric models containing a spatial lag of 
the dependent variable take the form of an ݊ ൈ ݊ matrix, one might suppose there is no need for 
scalar summary estimates. The matrix of partial derivatives literally shows how every 
observation in the sample data responds to changes in every observation of the explanatory 
variables. While observation-level inference is possible, it is not advisable. Intuitively, can we 
draw realistic and useful inferences regarding an ݊ ൈ ݊ matrix of parameters based on ݊ sample 

                                                 
5
Doğan and Taspinar (2014) do not calculate empirical standard deviations for each Monte Carlo iteration and explore the 

dispersion of these standard deviation outcomes. They simply calculate total effects for each Monte Carlo iteration and assess the 
standard deviation of these total effects over all iterations. 
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observations? Models that provide observation-level inference appear to be the holy grail for 
many practitioners, which may account for the popularity of geographically weight regression 
methods as well as other semi-parametric approaches that produce estimates that can be mapped 
for every region/observation. A practical aspect of this desire is that clients of regional economic 
studies are frequently officials from a single region/observation used in the sample data set. 
These clients are mostly interested in how outcomes in their region respond to changes in 
characteristics of their (and perhaps neighboring) regions.  

We have some responsibility to inform clients that regression methods (including spatial 
regression) provide estimates and inferences based on averaging dependent variable responses to 
explanatory variable changes over all sample observations. Inferences regarding any single 
observation are far less likely to be indicative of the general influences of changes in regional 
characteristics/policies on outcomes that regression methods focus on producing. Observation-
level inferences are also not likely to possess much precision. This can lead to the possibility that 
perceived differences between point estimates for each region are important, when in fact they 
are not. For example, if these differences in point estimates were considered alongside 
confidence intervals for each point estimate, they would not be (statistically) significantly 
different from other observations.  

As an example of observation-level inference Kelejian and Mukerji (2011) construct 
effects they label emanating effects that represent spillovers from a single observation to all other 
observations in the sample. These are essentially rows of the ݊ ൈ ݊ matrix of partial derivatives: 
௞߲ܺ/ݕ߲

ᇱ ൌ ሺܫ௡ െ  ௞.6 An applied illustration reports these observation-level effects forߚሻିଵܹߩ
GDP per capita growth response of individual countries (observations) to changes taking place in 
other countries (observations). A great deal of discussion and analysis of differences between 
various observations/countries responses is provided, but no (statistical) indication of whether 
these differences are statistically different across observations.  

Another aspect of observation-level inference is that results are likely to be very sensitive 
to the spatial weight matrix specification used. Intuitively, the same two scalar estimates for the 
parameters ߩ and ߚ௞ are used to produce 1 ൈ ݊ vectors of responses in ݕ to changes in each 
observation of the explanatory variable ݔ௜௞. The major difference between these response vectors 
arises from differences in the number of spatial neighbors to each observation, making 
observation-level inferences sensitive to changes in specification of the weight matrix. In 
contrast, the scalar summary estimates for the indirect/spillover effects have been shown to be 
robust with respect to changes in the spatial weight matrix specification (LeSage and Pace, 
2010).  

6. PRINCIPLE 5: KEEP THE WEIGHT MATRIX SIMPLE 

The role played by the spatial weight matrix has long been a controversial aspect of 
spatial regression methods. Much of the controversy stems from the mistaken belief that minor 
changes in specification of the weight matrix produce major changes in spatial regression model 
estimates and inferences. This is simply not true, if one produces valid estimates and inferences 
reflecting the partial derivative changes for the SDM using: ߲ݕ/߲ܺ௥

ᇱ ൌ ሺܫ௡ െ ଵߚ௡ܫሻିଵሺܹߩ ൅
 ଶሻ. LeSage and Pace (2010) discuss how historically incorrect interpretation of estimatesߚܹ
from spatial regression models involving spatial lags of the dependent variable may have created 

                                                 
6
They also construct vulnerability effects reflecting columns of the same matrix of partial derivatives. 
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the impression of sensitivity of estimates and inferences to the weight matrix specification. Some 
guiding principles regarding weight matrix specification are provided here.  

6.1 Sparse connectivity structures work best 

As already motivated, the ability to distinguish between local and global spillover 
specifications is important for the task of producing plausible estimates of spatial spillovers. A 
common practice is to specify ܹ based on distance between centroids of regions with some type 
of decay imposed so more distant regions receive smaller weights than nearby regions. Unless 
the decay imposed includes a cut-off distance beyond which weights are restricted to zero values, 
a distance-decay based weight matrix will result in a nonsparse weight matrix.7 Since distance 
between centroids of all regions is positive, a distance-based weight matrix specification 
(without a cut-off distance) implies all regions are connected to all others. You should ask: does 
this type of weight matrix make sense in the context of a local spillover specification? In many 
applied situations, the intention behind using a local spillover specification would be to limit the 
spatial extent of spillover influences to regions nearby (in geographical space), so allowing for 
impacts falling on all other regions in the sample (even if these are small due to distance decay) 
is counterintuitive at best.  

As already noted, maintaining a clear distinction between the local and global model 
specifications simplifies the task of empirically testing for differences between these two models. 
Use of a distance-based weight matrix (without a cut-off that produces sparseness) blurs the 
distinction between local and global specifications.  

A related point regards interpretation, which calculates cumulative spatial spillovers 
adding up off-diagonal elements from each row of the matrix inverse (for the case of the SDM): 
ሺܫ௡ െ ଵߚ௡ܫሻିଵሺܹߩ ൅ܹߚଶሻ, and then taking an average of these row-sums to produce a scalar 
summary measure. Even if off-diagonal elements associated with distant regions are small due to 
distance decay, summing up numerous small elements may have a nontrivial impact on the scalar 
summary measure of spillovers.  

6.2 Identification problems for parameterized decay 

Often, distance decay is specified as a parameter to be estimated, e.g., ௜ܹ௝ ൌ 1/ሺ݀௜௝ሻ
ఊ. 

Some technical problems arise here as the decay parameter ߛ is not defined for values of the 
spatial dependence parameter ߩ equal to zero, producing a point discontinuity in the likelihood. 
Aside from this issue, since slightly different weight matrices produce similar estimates and 
inferences, attempts to statistically test different values for the decay parameter are likely 
hindered by ridges in the likelihood function values associated with similar decay magnitudes.  

Sparse weight matrices arise from use of some number ݉ of nearest neighboring regions, 
or simply the set ݉௜, ݅ ൌ 1,… , ݊ of regions contiguous to each observation ݅. One could also 
weight contiguous regions by lengths of borders in common, or assign differing weights to each 
of the ݉ nearest neighbors based on distance between centroids of the regions. The latter is 
equivalent to imposing a cut-off number of neighbors beyond which weight elements equal zero. 
Of course, a physical distance of ݖ miles from the centroid of each region could be used to 
identify a varying number of neighboring regions to include for each observation/region.  

                                                 
7
Sparse matrices are those containing a large percentage of zero-valued elements. 
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LeSage and Pace (2010) show that the correlation between spatial lags of a standard 
independent normal ݊ ൈ 1 vector ݑ, ௔ܹݑ and ௕ܹݑ is: ܿݎݎ݋ሺ ௔ܹݑ, ௕ܹݑሻ ൌ ሺ݉௔/݉௕ሻ

଴.ହ, where 
݉௔ ൑ ݉௕, and ݉௔, ݉௕ represents the number of neighbors used in constructing ௔ܹ, ௕ܹ. For 
example, if ௔ܹ is based on 15 nearest neighbors and ௕ܹ 16 nearest neighbors, the correlation 
between ௔ܹݑ, ௕ܹݑ is 0.97.  

Spatial regression models also involve use of vectors involving higher-order spatial lags 
such as ௔ܹ

௝
௕ܹ , ݑ

௝
݆ for ݑ ൐ 1. LeSage and Pace (2010) show that for doubly stochastic 

symmetric weight matrices (having both row- and column-sums of unity), whether based on 
nearest neighbors, inverse distance, contiguity, common border lengths, or any other method of 
construction, the limiting values (as ݆ becomes large) of ௔ܹ

௝
௕ܹ ,ݑ

௝
 are identical. LeSage and ݑ

Pace (2010) argue that other weight matrices (those that are not doubly stochastic) share the 
general result that we would expect the exact form of ܹ to become less important for many of 
the higher order neighboring relations that play a role in spatial regression models.  

They also show that predicted values as well as effects estimates (true partial derivatives 
௥߲ܺ/ݕ߲

ᇱ) are highly correlated for weight matrices based on similar numbers of nearest 
neighbors, for example 10 nearest neighbors versus 8 or 12 neighbors. Practitioners can take 
advantage of robustness for estimates and inferences derived from model specifications based on 
similar sparse weight matrices, by avoiding non-sparse weight structures.  

6.3 Avoid the pitfall of multiple weight matrices 

A temptation facing practitioners new to spatial regression methods involves 
specification of weight matrices that reflect complicated connectivity structures between regions. 
One seemingly intuitive approach is to rely on more than a single weight matrix, with each 
weight matrix representing a different kind of regional connectivity. For example, it seems 
natural to specify a model such as that in (15), where ௌܹ reflects spatial proximity of regions and 
்ܹ technological proximity.  

ݕ (15) ൌ ௌߩ ௌܹݕ ൅ ்ߩ ݕ்ܹ ൅ ߚܺ ൅  ߝ

Technological proximity could be specified using information on industry structure of the 
regional observations, such that say ݉ regions exhibiting the highest correlation with the 
industry structure of each region are labeled technological neighbors. The model purportedly 
posits that both spatial neighbors as well as technological neighbors exert an influence on 
outcomes ݕ.  

While this seems a simple and intuitively appealing extension of the standard spatial 
regression model, LeSage and Pace (2011) point to a number of problems with this type of 
specification. One problem is that the model does not allow for covariance between ௌܹ, ்ܹ, 
which would involve inclusion of a third term: ௌܹ  This would reflect the fact that if spatial .ݕ்ܹ
proximity as well as technological proximity are deemed important, then regions that are spatial 
neighbors as well as technological neighbors should exert a different impact than those that are 
spatial but not technological neighbors, or technological but not spatial neighbors. One can arrive 
at this more general model result by viewing the model specification as involving both spatial 
and technological filters/smoothers, as shown in (16).  

(16) ሺܫ௡ െ ௌߩ ௌܹሻሺܫ௡ െ ்ߩ ்ܹሻݕ ൌ ߚܺ ൅  ߝ

ݕ (17) ൌ ௌߩ ௌܹݕ ൅ ்ߩ ்ܹ െ ்ߩௌߩ ௌܹ ݕ்ܹ ൅ ߚܺ ൅ ߝ
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ݕ (18) ൌ ሾሺܫ௡ െ ௌߩ ௌܹሻሺܫ௡ െ ்ߩ ்ܹሻሿ
ିଵሺܺߚ ൅  ሻߝ

 
Taking this view of the model, the expression in (17) indicates that exclusion of the covariance 
term implies a restriction that: െߩௌ்ߩ ൌ 0, which is inconsistent with the model posited in (15), 
where both ߩௌ,  .are assumed different from zero ்ߩ

The DGP for the model shown in (18) points to another issue raised by LeSage and Pace 
(2011), the inability to separately identify direct and indirect effects associated with spatial and 
technological proximity.8 This is because the impact of changes in outcomes ݕ associated with 
changes in the ݎth regional characteristic ܺ௥ take the form: ߲ݕ/߲ܺ௥

ᇱ ൌ ሾሺܫ௡ െ ௌߩ ௌܹሻሺܫ௡ െ
்ߩ ்ܹሻሿ

ିଵߚ. Since ሺܤܣሻିଵ ൌ ଵିܣ ଵ, andିܣଵିܤ ൌ ሺܫ௡ ൅ ௌߩ ௌܹ ൅ ௌߩ
ଶ

ௌܹ
ଶ ൅ ⋯ ሻ, while ିܤଵ ൌ

ሺܫ௡ ൅ ்ߩ ்ܹ ൅ ்ߩ
ଶ

்ܹ
ଶ ൅ ⋯ ሻ, an infinite number of cross-product terms involving matrix products 

such as: ௌܹ ்ܹ
ଷ, ௌܹ

ଶ
்ܹ will arise in the expressions used to interpret our model estimates.  

It seems pointless to extend the simple model to include multiple types of connectivity if 
we cannot separately identify how these different types of connectivity work in conjunction with 
changes in regional characteristics (ܺ) to impact regional outcomes (ݕ).  

6.4 Interpretation pitfalls with non-spatial weight matrices 

Another issue that arises when specifying connectivity using non-spatial notions of 
proximity such as technology is that of endogeneity of the matrix ்ܹ. Since industry structure of 
regions changes over time, how are we to interpret the partial derivatives from a model involving 
non-spatial lags? LeSage and Pace (2009) point out that we interpret the partial derivatives from 
models involving spatial lags of the dependent variable as the changes that arise when moving 
the system of regions in our sample from one steady-state equilibrium to a new steady-state 
equilibrium (comparative statics). Specifically, we view the cross-sectional relationship we 
estimate as reflecting a long-run steady-state equilibrium relationship between regional 
characteristics (ܺ) and outcomes (ݕ). We use estimates of the parameters of the model 
relationship to infer how changes in regional characteristics produce comparative static changes 
in long-run steady-state outcomes. Since spatial proximity of regions is fixed over time, there is 
no problem envisioning (global) spillover impacts that diffuse over space based on spatial 
proximity relationships during movement of the regions to a new steady-state equilibrium. This 
is of course not the case when we define connectivity of regions using notions such as 
technological proximity that change over time.  

7. CONCLUSIONS 

Regional scientists who wish to use spatial regression methods in applied work are likely 
to find the spatial econometrics literature confusing. It is argued here that much of the literature 
can be ignored as it does not provide relevant information pertinent to practitioners.  

First, the literature places too much emphasis on the SAC specification because of its 
theoretical econometric interest. This specification can be safely ignored by practitioners as it has 
numerous drawbacks in applied use. In fact, it is argued that only two specifications, the SDM 
and SDEM, should be considered by regional science practitioners. This should greatly 
simplifies the task of deciding on an appropriate model specification. A further simplification 

                                                 
8There may be special cases where these can be separately identified, but not in general. 
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arises when the modeling context makes it clear that either a local or global spillover 
specification is the only specification that is theoretically justified. In cases of doubt, Bayesian 
model comparison methods can provide accurate inferences regarding which of the two 
specifications is most appropriate. These model comparison methods can be used for simple 
cross-sectional problems as well as static and dynamic panel data problems. Unfortunately, these 
methods have not yet been developed for probit and tobit models.  

Second, practitioners are likely to experience very different performance of alternative 
estimation methodologies than portrayed by spatial econometric Monte Carlo studies reported in 
the literature. Monte Carlo methodologies used in spatial econometric studies are in need of 
serious reform. Studies have overwhelmingly ignored evaluation of estimation procedures in 
terms of the estimates and inferences that typical applied users will rely on. Further, the focus of 
most studies is on model specifications other than SDM and SDEM, which it is argued here 
should be the mainstay models used by practitioners.  

Third, the literature has perpetrated a myth that estimates and inferences from spatial 
regression models are sensitive to specification of the weight matrix. Estimates and inferences 
that are robust with respect to weight matrix specification can be achieved by following simple 
principles discussed in the body of this paper.  

It is hoped that regional science practitioners with little experience with spatial regression 
methods can benefit from the discussion of simple principles for applied use of spatial regression 
models set forth here.  
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