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Abstract: In this study, house prices are modeled using a mixed two-stage model for mass appraisal
employing valuations of second-hand housing units conducted in Medellin, Colombia. In the first stage,
submarkets of houses that share non-spatial attributes are created using clustering; in the second stage,
the spatial dependency is incorporated into the house price estimation using kriging. The best results were
obtained when the sample was divided into three submarkets using property area and age as the classification
criterion and later applying a Matérn kriging model to submarket 1, a spherical kriging model to submarket
2, and a circular kriging model to submarket 3. These results may provide further guidance to enhance mass
appraisal practice in other Latin American cities as well as potentially other cities in developing countries.
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1. INTRODUCTION

House prices are estimated individually or collectively. According to Ling and Archer (2018),
traditional approaches for individual appraisal of real estate can be classified into three main
categories: the cost approach, the income approach, and the sales comparison approach. The
cost approach is used mainly to appraise newly built properties, and the income approach
is for commercial and investment real estate. The sales comparison approach consists of
comparing the prices of a sample of residential properties sold in the area of the subject
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property with similar non-spatial properties (area, bathrooms, age, bedrooms and so on).
These two conditions of similarity (non-spatial and spatial) are not always easy to meet and
represent the main obstacle for the appraiser. However, this approach has the advantage of
being easily understood by buyers and sellers thanks to its simplicity. Moreover, the sales
comparison approach is regarded as the most reliable approach because it captures not only
the value the construction and the land but also the value of public and private amenities,
which in many cases reflects the government expenditures, policies and the social status of
the neighborhood (Appraisal Institute, 2013; Ling and Archer, 2018).

Valuing several properties at the same time (i.e., mass appraisal) requires the development
of statistical models to automate such a process, while individual appraisal demands the
direct intervention of an appraiser who visits the property to determine its value. Mass
appraisal seeks to determine the market value of properties in order to define tax policies,
set prices in simultaneous purchase and sale transactions, or draw up property value maps of
cities or regions for urban development decision-making. For this reason, there is a current
interest in models that make it possible to value groups of properties in a quick, accurate,
and affordable manner.

For purposes of mass appraisal, hedonic models using the classical method of multiple
linear regression (MLR) have been widely implemented. These models try to estimate the
value of a property (dependent variable) according to two or more attributes (independent
variables) such as area, age, number of rooms, and number of bathrooms. In addition, to
capture the spatial effect on housing prices, these models also include the spatial distance
to places of interest (e.g., shopping malls, educational institutions and tourist attractions).

This paper follows the proposal of Can (1992), who states that house prices depend on two
variables: non-spatial attributes (e.g., lot size, type of construction and age) and neighbor-
hood attributes (e.g., land use and externalities). However, instead of analyzing both vari-
ables at the same time (as in traditional hedonic models), house prices in Medellin, Colombia,
are modeled by combining a data mining method (clustering) and a geostatistical technique
(kriging). The hypothesis of this study is that, within the context of mass appraisal, house
prices can be modeled by separately evaluating non-spatial attributes (through an appro-
priate selection of submarkets and clustering criteria) and spatial attributes (through an
appropriate selection of kriging models). By applying this methodology, the benefits of the
sales comparison approach for individual appraisal, previously described, will be obtained for
mass appraisal too. On the one hand, the clustering technique allows that the value of the
construction of a property is only compared with those properties with similar non-spatial
attributes (unlike traditional hedonic models, which use all the samples at the same time).
On the other hand, the kriging regression (based on the location) captures not only the value
of the land but also the value of public and private amenities.

This paper suffers the limitation of using a sample of just 0.03% (293 residential proper-
ties) of the housing occupied units in the city. The sample size is one of the main drawbacks
of conducting this type of research in countries such as Colombia. Mainly due to the current
security conditions in the country, the prices of properties negotiated in the Colombian real
estate market are not registered in the Public Instruments Registry Offices or the Property
Registry Offices. However, the article is still valuable for the application of alternative tech-
niques (different from traditional hedonic models) to the real estate market of a city in a
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developing country like Colombia, since most related studies using computer-assisted mass
appraisal (CAMA) have focused on cities in developed nations (Lozano-Gracia and Anselin,
2012; Wang and Li, 2019). This study also sheds light on the effect of implementing submar-
kets (in terms of their number and clustering criteria) on the accuracy of price prediction in
mass appraisal. In addition, it examines the behavior of different kriging models applied to
the spatial interpolation of property values.

This paper is divided into five sections, including the introduction: Section 2 is a literature
review, Section 3 describes the methodology used in this study, Section 4 presents and
discusses the results, and Section 5 draws some conclusions.

2. LITERATURE REVIEW

The most widely used mathematical model applied to mass appraisal is hedonic pricing. In
this model, all the attributes that affect the value of a property are jointly analyzed, usually
through multiple regression (Lai, 2011) and the Ordinary Least Squares (OLS) method
(Cebula, 2009; Monson, 2009; Teixeira et al., 2010). Nevertheless, using the traditional
econometric approach to examine spatial data is problematic due to the spatial correlation
that occurs when there are levels of spatial dependence between the variables. This is
particularly true for the real estate market, in which properties with high and low prices tend
to be concentrated in specific areas (Anselin, 1988; Basu and Thibodeau, 1998). Hedonic
models often try to solve this problem of spatial dependence by including the distance from
the property to the city’s downtown in the group of explanatory variables using Von Thiinen’s
theory (Stevens, 1968) and/or dummy variables associated with a certain classification of
the area or neighborhood where it is located (Cellmer et al., 2014; Montero et al., 2018).

The development of artificial intelligence techniques and Geographic Information Systems
(GISs) has produced a series of studies that use methods such as Artificial Neural Networks
(ANNs) (McCluskey et al., 2012; Selim, 2009; Mimis et al., 2013; Vo et al., 2015), decision
tree models (McCluskey et al., 2014; Reyes-Bueno et al., 2018), and clustering (Gabrielli
et al., 2017; Napoli et al., 2017). Moreover, several studies on the application of machine
learning to mass appraisal have been published and obtained successful results using the
random forest method (Antipov and Pokryshevskaya, 2012; Ceh et al., 2018; Credit, 2021).

Despite the success of some machine learning models in mass appraisal in residential
real estate (Wang and Li, 2019), most of them do not account for spatiality in the data.
Therefore, some efforts can be found in the literature that try to solve this problem by mixing
or complementing machine learning technics with traditional models or existing models.
Examples of these combinations are: ANN and GIS (Garcia et al., 2008); quantile regression
forest (QRF) and kriging Cérdoba et al. (2021), and also multicriteria analysis and genetic
algorithm (Morano et al., 2018).

The works of Calka and Bielecka (2016) and Calka (2019) combine clustering and kriging
for mass appraisal purposes (as it is done in the current article). These two studies divide the
market into clusters (local submarkets) based only on the property’s non-spatial (structural)

attributes and then perform interpolation for each cluster separately using ordinary kriging.
The method is applied in both cases to the city of Siedlce (Poland), and results show that
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the estimation error for a property’s value, using the mean absolute percentage error, does
not exceed 8.5% and 10%, respectively. For these works, spherical variograms are used, yet
in the present work, the Gaussian, spherical, Matérn, and spherical models are used, along
with a sweeping process for the lag width and cutoff distance parameters of the empirical
variogram, in order to obtain the best-fit kriging model.

However, although these studies have generally reported better results compared to tra-
ditional hedonic models, it is still not clear whether these benefits actually justify the use
of more complex techniques. For instance, Bourassa et al. (2007) point out that the gains,
in terms of accuracy, of including dummy variables for submarkets in an OLS model are
superior to any other advantage of using geostatistical or lattice methods such as Spatial
Autoregressive (SAR) models.

Finally, it is worth noting that all the studies mentioned so far have been done in Europe,
the United States, Canada, and China. This shows the lack of empirical evidence about
whether or not the conclusions derived for cities in the developed world apply to cities in
developing countries (Lozano-Gracia and Anselin, 2012).

3. METHODOLOGY

3.1. Two-Stage Price Modeling

In this study, house prices in Medellin (Colombia) are modeled by combining a data mining
method (clustering) and a geostatistical technique (kriging), which is a procedure that differs
from traditional hedonic models that analyze both types of variables simultaneously. In
the first stage, submarkets (in which residential properties share non-spatial attributes) are
created through clustering. In the second stage, spatial dependence is incorporated into
house price estimation by means of kriging.

3.2. Data Collection

Medellin is the second-largest industrial city in Colombia. With an area of 380.64 km?, it is
1.5 km above sea level and located in the region known as Valle de Aburra. It is crossed, from
South to North, by the Medellin River, which determines the configuration of its natural
landscape due to its geoforms, topography, and hydrological features. In addition, numerous
streams that flow towards such rivers divide the valley sides where its urban areas continue
to grow.

A census by the National Administrative Department of Statistics (abbreviated DANE
in Spanish) in 2018 reported that Medellin had an estimated population of 2.4 million in-
habitants. The city is divided into 16 comunas (districts), 5 corregimientos (townships),
and 271 neighborhoods. Additionally, according to the DANE (2019), there are 892,151
residential properties in the city: 57.63% of them are apartments; 39.82%, houses; 2.47%,
rooms; 0.02%, ethnic dwellings; and 0.06%, other types of dwelling.

This study used data from 293 residential properties that were valued between 2014 and
2019. Figure 1 shows two maps: the location of Medellin in Colombia and the distribution
of the residential properties used as the sample in this study. Each appraisal included
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information concerning the date of the appraisal, property price, number of rooms, number
of bathrooms, built-up area, age of the property, and geographic location. Table 1 presents
the descriptive statistics of the dataset. It should be noted that, in this case, as in all cases
of mass appraisal, attribute selection depends on the available information sources.

Figure 1: Location of Medellin in Colombia (Left) and Distribution of the
Residential Properties under Study (Right).
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Table 1: Descriptive statistics of the data set

Variable Min Max Mean Std. Dev

Price [COP¥] 42,000,000 1,040,000,000 275,800,000 216,439,656
Area [MQ] 30.00 278.00 95.74 53.33
Number of Rooms 1 5 2.74 0.76
Number of Bathrooms 1 5 1.97 0.76
Age [Years] 0 53 15.56 11.94

Type Apartment House
Number of Observations 249 44

*Colombian Pesos.

These data were provided by Lonja de Propiedad Raiz de Medellin y Antioquia, a local
real estate association, from its private database, because the prices of properties traded in
this market are not recorded in the Registry Offices of Public Instruments or the Land Reg-
istry Offices due to the country’s current security conditions. For this reason, the values set
forth in the appraisals are a good approximation to the real market prices of the properties.
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In addition, they are better than the offer prices constantly used to conduct this type of
research in Colombia, since the latter are typically overpriced to allow room for negotiation
in the event that a deal can be struck!.

3.3. Clustering

As mentioned earlier, in the first stage of this study, a location-insensitive model was de-
veloped based solely on the non-spatial attributes of the properties. Using a data mining
technique (i.e., k-means clustering), clusters of similar properties that created submarkets
were formed. Each cluster was characterized by defined attribute values expressed as items in
a rating scale. In this model, the independent variables are built-up area, age of the property,
number of bathrooms, number of rooms, and type of property (apartment or house).

The k-means algorithm has been widely used to divide n points found in a d-dimensional
space into k groups (Vattani, 2011). Given a set of observations Z, Zs, ..., Z,, where each
observation is a real d-dimensional vector, the k-means algorithm aims to partition n ob-
servations into k& < n clusters, S = {5, S5s,...,Sk} to minimize the within-cluster sum of
squares. Its purpose is to solve:

arg min(S) Z Z 1Z — will? (1)

i=1 Z€S;

where p; is the mean of the points in S;. When individual properties are grouped, the spatial
dimension (d) is defined by the number of attributes of the properties under analysis. Since
the k-means algorithm is sensitive to the number of clusters adopted a priori, hierarchical
agglomerative clustering was applied using Euclidean distance combined with Ward’s method
(Ward, 1963).

Figure 2: Clustering Process
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IProperty taxes in Medellin are defined by the cadastral value of the properties which is defined by the
Treasury of Medellin. The local real estate association that provides us the data is a completely independent
organization, and their appraisals have nothing to do with the owners’ taxes.
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3.4. Kriging

The kriging method estimates regionalized variables Z(xy) at unsampled locations x. In
addition, it can be expressed as a linear combination of all available measurements of Z
according to its general equation (de Marsily, 1984; Marko et al., 2014)

n

Zwo) = 3 NpZ(). 2)

=1

where Z (o) represents a kriged value at location xo; and M}, the values of the weighting
factors assigned to individual observations Z(x;) at location x;.

In order to produce optimal estimates, the estimated variables must be unbiased and
have minimum variance. These two conditions make it possible to obtain weighting factors
A, that lead to the following linear system with (n + 1) unknowns (de Marsily, 1984):

> N=1 (3a)
j=1

Z)\éfy(wi—a:g)—l—u:’y(wi—wo); i=1,2,..,n (3b)
j=1

where p is a Lagrange multiplier; and v(x; — x;), the semi-variogram, which depends on
the spatial separation distance (h = x; — «;) between two points (x; and x;), this distance
is referred to as lag. This indicates that the values of the weighting factors, \j = 1, only
depend on the separation distances between the individual observation points provided by
the semi-variogram.

Therefore, an estimate of the variogram is required for the geostatistical estimation (krig-
ing). It is usually obtained by computing ~(h) for discrete lags and then fitting a suitable lag
function to these estimates. The most widely used estimator of the variogram is Matheron’s
estimator. It states that the value of the empirical variogram for a separation distance of h
is half the average squared difference between a target value Z(x;) at some sample location
and the value Z(x; + h) of the neighbor at a distance x; + h (Mehrjardi et al., 2008):

1 2
v(h) = n(h) Z[Z(iﬂi) — Z(x; + h)]%, (4)

where n(h) is the number of data pairs within a given class of distance and direction. The
presence of a spatial structure where observations Z(x;) and Z(x; + h) (close to each other)
are spatially autocorrelated will result in y(h) values that are small compared to those of far
apart uncorrelated pairs of points (Lark, 2000; Mehrjardi et al., 2008). It should be noted
that this estimator is asymptotically unbiased for any intrinsic random function. However,
since it is based on squared differences among data, it is very sensitive to outlying values
of Z. In fact, a single outlier can distort the estimate of the variogram because it occurs in
several paired comparisons over many or all the lag intervals (Lark, 2000). For this reason,
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outliers are removed, and data are normalized during clustering (see Figure 2) before the
experimental variogram is computed (Mehrjardi et al., 2008).

The calculations of the empirical variograms will depend on the selected lag distance
(Dy,), cutoff distance (D¢), and prevailing direction. The cutoff distance is the maximum
distance up to which point pairs are considered, while the prevailing direction is associated
with the spatial structure of a particular variable at different directions of the field. In
this study, the directional aspect of the spatial dependence was not taken into account, as
this requires a large number of samples, which leads to isotropic variograms (i.e., no major
direction) (Nayanaka et al., 2011).

In this paper, five theoretical models—exponential, Gaussian, spherical, circular (John-
ston et al., 2001), and Matérn (Minasny and McBratney, 2005) denoted by Equations (5a),
(5b), (5c), (bd) and (5e) respectively—are proposed to fit the empirical variograms. Also,
their parameters (nugget, range, and sill) are determined to characterize the spatial depen-
dencies (structures) of different house prices.

__ 3]kl
~(h) = 65 [1 e } (5a)
7 () = b [1 - 8] (5)
3

slhl _ 1 (1l

v (h) = Os {2 6 2 < 6, ) ] for 0 < [|h[| <0, (5¢)
Os for 6, < ||k
205 |[Inl [y _ (I81)° .l

+(h) = p [t‘h 1 ( o ) + arcsin {7t | for 0 < k]| <0, (5d)

Os for 0, < ||h|]

v = (1 gy () % ()

where 65 > 0 is the partial sill parameter; and 6, > 0 is the range or distance parameter that
measures how fast the correlations decay with distance. In the Matérn model, v represents
the smoothness parameter; K,, a modified Bessel function of the second kind v; and I', the
gamma function. Kriging was performed for each cluster, as described in Figure 3. This
process can be summarized in five steps: (1) Exploratory Spatial Data Analysis (ESDA), (2)
empirical variogram calculation, (3) variogram model fitting, (4) model validation, and (5)
generation of maps for the best model (Johnston et al., 2001; Mehrjardi et al., 2008).

The ESDA in Step 1 includes basic statistics for each cluster (submarket), such as the
mean and standard deviation of prices, the number of paired comparisons among data, their
separation distances, or data density (see Table 7). In Step 2, multiple empirical variograms
are constructed for a given cluster by varying the values of the cutoff distance (D¢) and
lags. The cutoff distance values are considered multiple values of the diagonal bounding box
distance. The lag interval widths, are fractions of the cutoff distance (see Fig. 3). Moreover,

—~

5e)
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Figure 3: Geostatistical Analysis Process for a Given Cluster
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each computed empirical model is fitted according to all the different variogram models (Step
3). Finally, in Step 4, the best map is obtained via cross-validation.

3.5. Estimation Accuracy

The quality of a map is best assessed by comparing the estimated Z values with actual
observations Z at validation points using an independent (control) data set. When no
control data set is available, prediction models are usually validated via cross-validation. In
other words, the original point set is divided into two data sets (calibration and validation),
and then the analysis is repeated (Hengl, 2009).

In this study, we employed Leave-One-Out Cross-Validation (LOOCV), where each sam-
pling point is used as validation data. The best model for experimental variogram fitting
is selected based on R? criteria. However, other relevant validation indices are also com-
puted, such as the Root Mean Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE) (Bishop and Lark, 2008; Hengl, 2009; Marko et al., 2014; Calka, 2019). In fact, the
best R? consideration leads to minimal RMSE, and reduces MAPE values.

g i (@) - Z)
> i (Z(mi) — Z)
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RMSE — % (Z(z:) — 7 () (1)
MAPE = %zn: z (w’Z) (_:BZ) (@) (8)

4. RESULTS AND DISCUSSION

Kriging interpolation was applied to three cases (Case A, Case B, and Case C), and data
observations were grouped in sets of two, three, and four submarkets (clusters), respectively.
In all the cases, five variables (area, age, number of bedrooms, number of bathrooms, and type
of property) were used as clustering criteria: the first criterion (one-dimensional) considered
the first variable (area); the second criterion (two-dimensional) considered the first two
variables (area and age); and so on until the fifth criterion (fifth-dimensional), the last one,
took into account all five variables. Therefore, since there are five different clustering criteria
for cases A, B, and C, a total of 45 submarkets must be modeled using a variogram function.

Table 2 presents the descriptive statistics of the 45 submarkets. Such statistics include the
case (number of clusters), clustering criterion, submarket for each corresponding criterion,
a unique ID for each submarket, mean value of the clustering variables, and number of
apartments and houses in the submarket. According to this table, the average price using
area and age (clustering criteria 1 and 2) is similar in the case of two and three clusters.
However, there is a significant change in the average price when the number of rooms is
included in the clustering criteria (clustering criteria 3, 4, and 5). This difference is not
observed in the case of four clusters.

Table 2 shows the effect of including new variables in the case of two, three, and four
clusters. Additionally, all 45 submarkets were modeled using five cutoff distances, seven
lag interval widths, and five variogram models (see Figure 3), which resulted in 175 pos-
sibilities to model each submarket. For each submarket, LOOCV was employed to select
the best variogram model based on R-Squared criteria, as shown in Table 3. Besides the
Case, Clustering Criterion, and Submarket fields, Table 3 includes the variogram model,
lag width, cutoff distance, the R-Squared, RMSE, MAE, MAPE values, and the Number of
Observation Points. The submarket best modeled for each case is highlighted in bold, and
its corresponding clustering Criterion rows use grey background.

The results of Table 3 are summarized in Table 4 for the individual cases, as well as for all
the cases combined. The latter table includes the percentage of times each model appeared
and the average lag width and cutoff distance. In all the cases, the most suitable model
for the different clusters was circular (appearing 55.6% of the time), followed by Gaussian,
spherical, and Matérn models (15.6%, 11.1%, and 11.1%, respectively). The exponential
option was the least common (6.7%). The mean lag width and cutoff distance were 1018 m
and 6418 m, respectively.

In Case A (two submarkets), Table 4 shows that the only models that appeared were the
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Table 2: Descriptive statistics of the different clusters.

Case Clustering Submarket Submarket Average Average Average Average Average Type of
criterion 1D price [COP] area [m? age [years] number number of property
of bedrooms bathrooms apartment-house

1 1 1 519,400,000 164.50 21.77 3.19 2.73 74-17
2 2 166,086,677 64.77 12.76 2.54 1.63 175-27

9 1 3 519,400,000 140.00 26.43 3.12 2.46 92-27
Case A 2 4 166,086,677 65.44 8.12 2.48 1.63 157-17
3 1 5 394,000,000 138.13 24.92 3.23 2.46 98-31
2 submarkets 2 6 195,000,000 62.40 8.19 2.35 1.59 151-13
4 1 7 391,000,000 136.60 2341 3.19 2.51 110-29
2 8 185,262,248 58.82 8.47 2.33 1.48 139-15

5 1 9 400,800,000 135.90 23.61 3.20 2.49 108-31
2 10 162,980,576 58.99 8.19 2.31 1.50 141-12

1 11 394,800,000 202.40 21.20 3.29 3.00 27-8

1 2 12 167,000,000 131.90 21.37 3.09 241 63-12
3 13 656,500,000 60.51 12.09 2.49 1.59 159-24

1 14 405,446,667 182.80 19.77 3.24 2.86 43-15

2 2 15 149,893,490 96.54 30.86 2.90 2.03 59-12
3 16 593,900,000 64.59 7.45 2.49 1.63 147-17

Case B 1 17 207,000,000 174.96 17.89 3.26 2.82 49-16
3 2 18 193,146,395 100.16 30.18 3.14 2.08 55-17

3 submarkets 3 19 579,400,000 60.69 7.83 2.33 1.56 145-11
1 20 214,277,778 162.23 25.30 3.20 2.77 71-16

4 2 21 177,743,646 53.35 8.39 1.74 1.35 78-5
3 22 493,300,000 77.31 13.50 3.09 1.82 100-23

1 23 158,168,081 148.00 26.17 3.25 2.57 73-31

5 2 24 201,390,715 48.45 9.90 2.03 1.01 66-13

3 25 421,100,000 80.25 9.58 2.76 2.09 110-0

1 26 109,749,367 211.30 21.37 3.30 3.00 19-8
1 2 27 257,780,079 51.43 10.22 2.29 1.43 115-14

3 28 679,300,000 88.35 17.23 2.97 1.99 60-13

4 29 118,561,633 144.80 21.94 3.14 2.61 55-9

1 30 250,069,288 168.40 15.14 3.16 2.72 45-12

9 2 31 451,976,562 74.76 24.43 2.82 1.74 42-19

3 32 587,900,000 60.17 6.24 2.41 1.59 130-8

4 33 154,327,869 151.10 36.32 3.19 2.60 32-5

Case C 1 34 177,529,049 185.00 20.18 3.31 2.95 40-15
3 2 35 362,000,000 75.26 8.55 3.09 1.83 79-13

4 submarkets ’ 3 36 597,400,000 53.83 7.92 1.73 1.38 78-4
4 37 222,174,543 102.19 31.44 3.03 2.09 52-12

1 38 163,084,765 185.00 20.34 3.28 3.06 40-13

4 2 39 221,046,875 47.99 9.71 2.00 1.01 66-11

3 40 607,100,000 78.25 6.94 2.70 2.07 90-2

4 41 110,457,143 103.60 29.49 3.18 2.07 53-18

1 42 258,226,182 147.48 26.24 3.10 2.65 83-0

5 2 43 230,704,225 46.04 8.82 1.57 1.02 50-1

3 44 442,638,554 73.11 8.92 2.78 1.91 116-0

4 45 121,425,490 115.90 20.81 3.33 1.93 0-43

circular and Matérn ones (80% and 10%, respectively). In addition, according to Table 3,
the best variogram was obtained for clustering criterion 2. For both submarkets, the best fit
model was the circular one. Nevertheless, submarket 2 was adjusted to an R-Squared value
of 0.5832; and submarket 1, to 0.12. The cutoff distance and lag width of submarket 2 were
7741 m and 968 m, respectively.

In Case B (three submarkets), Table 4 indicates that the circular model was the most
common option (40%), followed by the Gaussian, exponential, Matérn, and spherical mod-
els (26.7%, 13.3%, 13.3%, and 6.7%, respectively). Additionally, as shown in Table 3, the
variogram best described a submarket was obtained for clustering criterion 2. Submarket
3 was best fitted using the circular model (with an R-Squared value of 0.5811), while sub-
markets 1 and 2 were best fitted using the Matérn and spherical models (with an R-Squared
value of -0.1258 and 0.2201, respectively). This negative value suggests that the null model’s
prediction is more accurate than that of kriging.
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Table 3: Models Selected via Leave-One-Out Cross-Validation.

Case Clustering Submarket Submarket Model Lag Cutoff R-Squared RMSE MAPE Observation
Criterion ID Width Distance [%] Points (N})

1 1 1 Matérn 701 5608 0.0037 200821692 33.23 86

2 2 Circular 645 3871 0.4478 80970818 36.94 177

9 1 3 Circular 561 5608 0.1200 225096888 53.41 109
Case A 2 4 Circular 968 7741 0.5832 101771961  36.02 154
3 1 5 Circular 623 5608 0.1816 215563505 49.76 119

2 submarkets 2 6 Circular 774 3871 0.5121 103455828 37.44 144
4 1 7 Circular 1051 8412 0.1628 210399681 47.76 131

2 8 Circular 1003 9031 0.4336 95228844 38.16 132

5 1 9 Circular 1051 8412 0.1813 210224706 47.94 130

2 10 Matérn 1290 6452 0.4748 93068789 37.46 133

1 11 Gaussian 1202 8412 -0.1893 209728785 28.05 32

1 2 12 Gaussian 565 4522 0.2326 127167193 29.02 72

3 13 Matérn 1290 9033 0.3944 73197888 34.47 159

1 14 Matérn 1930 9650 -0.1258 208438795 26.82 54

2 2 15 Spherical 1594 7972 0.2201 86942896 42.34 65
3 16 Circular 1106 7743 0.5811 98650579  32.87 144

Case B 1 17 Exponential 1206 9650 -0.1006 198375039 26.48 60
3 2 18 Gaussian 759 6834 0.2918 86607028 34.97 66

3 submarkets 3 19 Gaussian 1807 9033 0.5287 95304322 39.36 137
1 20 Circular 2103 8412 0.1359 205963996 35.01 82

4 2 21 Circular 954 7630 0.5008 93897000 40.65 71

3 22 Exponential 748 5984 0.4838 100414468 33.73 110

1 23 Circular 623 5608 0.1711 222583902 48.66 97

5 2 24 Circular 1908 7630 0.4721 65323203 32.32 66

3 25 Circular 486 3400 0.5527 105530392 30.75 100

1 26 Spherical 1103 5515 -0.0403 178616456 22.51 26

1 2 27 Exponential 430 3871 0.2737 55315971 30.44 110

3 28 Circular 971 6795 0.3968 91120137 32.20 67

4 29 Circular 1574 7872 0.0995 159473948 29.25 60

1 30 Spherical 526 3158 0.0605 188054416 26.46 56

9 2 31 Exponential 499 3492 0.1456 72819134 41.23 55

3 32 Circular 717 6452 0.5286 92037204 33.71 119

4 33 Circular 1402 5608 0.0166 147003301 32.82 33

Case C 1 34 Gaussian 981 9814 -0.1942 220260213 29.10 51
3 2 35 Gaussian 532 4787 0.6244 99754816  30.22 83

4 submarkets 3 36 Circular 2225 8902 0.5565 90656313 38.97 71
4 37 Spherical 340 3395 0.2171 89545708 34.30 58

1 38 Matérn 1052 4206 -0.0618 192524506 25.89 50

4 2 39 Circular 1908 7630 0.4761 65452585 34.23 65

3 40 Circular 876 4381 0.5250 106857235 32.79 84

4 41 Circular 629 5659 0.2603 103575352 34.67 64

1 42 Spherical 342 3417 0.1736 199870272 43.01 78

5 2 43 Circular 1090 7630 0.5219 73716461 35.25 44

3 44 Circular 798 4788 0.5221 103316140 32.89 104

4 45 Circular 885 5313 0.1645 250953969 50.10 37

Note: The clustering criteria include five different variables (area, age, bedrooms, bathrooms, and type of
property). Clustering criterion 1 considers the first variable (area); clustering criterion 2, the first two
variables (area and age); and so on. The best-modeled submarket is shown in bold, and its corresponding
clustering criterion rows use grey background.

Table 4: Summarized Results of the Models Selected From Table 3.

Number of Lag width Cutoff distance Exponential Gaussian Spherical Circular Matérn

Clusters [m] [m] (%] %] (%] [%] [%]
All cases 45 1018 6418 6.7 15.6 11.1 55.6 11.1
Case A 10 867 6461 0 0 0 80 20
Case B 15 1219 7434 13.3 26.7 6.7 40 13.3
Case C 20 944 5634 5 15 20 55 5

In Case C (four submarkets), Table 4 shows that the circular model was the most common
one (55%), followed by the spherical, Gaussian, exponential, and Matérn (20%, 15%, 5%, and
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5%, respectively). Also, according to Table 3, the variogram that best described a submarket
was obtained by applying clustering criterion 3. The best fit model for submarket 2 was the
Gaussian one (with an R-Squared value of 0.6244, a cutoff distance of 4787 m, and a lag
width of 532 m); for submarket 1, the Gaussian model (with an R-Squared value of -0.1942);
for submarket 3, the circular model (with R-Squared values of 0.5565); and for submarket
4, the spherical model (with R-Squared values of 0.2171).

According to Table 3 for the grey highlighted clustering criteria, Case A showed only one
of the two submarkets properly modeled (a relatively high R-Squared value). For Case B
there was a relatively high R-Squared value, an intermediate value, and a low value for each
of the three submarkets. For Case C, clustering criteria 3, yielded two submarkets properly
modeled with the highest R-Squared values (0.62 and 0.56, respectively).

Submarkets and Clustering Criterion Effect

The effect of the number of submarkets is observed by considering the weighted average
values for the R-squared and MAPE values for each of the three cases (Table 5). Since
the weighted average includes poorly modeled submarkets, high MAPE and low R-squared
values are obtained. The best behavior is found for Case B, with mean R-Squared and
MAPE values of 0.3446 and 35.05, respectively.

The clustering criterion effect is observed by taking the weighted average of the five
different clustering criteria (Table 6). When comparing clustering criterion 1 (area) and
clustering criterion 2 (area and age), it can be noticed an improvement in the modeling as
the R-Squared increases from 0.2720 to 0.3409. It means that the variable of age provides
additional and valuable information for the model.

On the other hand, clustering criteria 3 and 4, present no substantial improvement com-
pared to clustering criterion 2. A similar explanation could be that the number of bedrooms
and bathrooms depends on the area variable. Finally, clustering criterion 5 presents the
highest R-Squared value, which means that prediction results are improved if the model is
provided with information about the type of housing unit (i.e., apartment or house).

Table 5: Weighted Average Values for Cases Obtained from Table 3
Case Mean R-Squared Mean MAPE[%)]

Case A 0.3370 41.51
Case B 0.3446 35.05
Case C 0.3164 33.54

From this point on, we will present a complete analysis (as shown in Figure 3) of Case B
(three submarkets) using clustering criterion 2 (area and age), as these two factors produce
the best models according to the criteria discussed previously. Figure 4 shows the spatial
distribution of the three different submarkets in Medellin, Colombia, in Case B.

Moreover, Table 7 provides a spatial description of the three submarkets defined ap-
plying clustering criterion 2 and includes the following information: submarket, number of
data (Np), data density, number of paired comparisons among data, percentage of paired
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Table 6: Weighted Average Values for Cases Obtained from Table 3
Submarket Mean R-Squared Mean MAPE[%]

Submarket 1 0.2720 32.59
Submarket 2 0.3409 36.94
Submarket 3 0.3486 37.20
Submarket 4 0.3385 37.08
Submarket 5 0.3633 39.70

comparisons within a range of 1 km, distance within which 50% of the paired comparisons
can be found, the mean and standard deviation of the distance among data, and mean and
standard deviation of log price.

Submarkets 1, 2, and 3 have, respectively, 54, 65, and 144 observation points (Np), with
corresponding densities of 0.5376, 0.6471, and 1.4335 Np/km?. Submarket 3 (which is ac-
tually the best modeled) exhibits the highest mean distance (4979 m) because it includes
most points, which are scattered all over the city. In turn, most observation points of sub-
markets 1 and 2 are found in Southeastern Medellin. Also, 3.65% of the paired comparisons
of submarket 3 are located at a maximum distance of 1 km; and 50% of the connections, at
a maximum distance of 11.51 km.

Figure 4: Map of Medellin Showing the Three Submarkets Defined
Applying Clustering Criterion 2 (Area and Age)

O  Submarket 1
Submarket 2
+  Submarket 3
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Table 7: Spatial Data Statistics of Case B (Three Submarkets) Using
Clustering Criterion 2 (Area and Age)

Submarket Number of Data Paired Percentage of Paired Distance Within Which Mean SD of Mean SD of
Data Density Comparisons Comparisons Within 50 % of Paired Distance Distance Log(Price) Log(Price)
(Np) (Np/m?) 1 km Comparisons Can Be Found (m) (m) (COP) (COP)
1 54 0.5376 1431 4.40 8225 4041 2755 20.1481 0.36760714
2 65 0.6471 2080 3.65 8202 4515 2407 19.0574 0.54374478
3 144 1.4335 10296 3.65 11510 4979 2510 18.8644 0.70816505

Figure 5 shows selected semi-variograms of the three models analyzed in this study (i.e.,
Matérn, spherical, and circular) and the modeling parameters (nugget, range, and partial
sill) for the three submarkets. Additionally, the validation indexes obtained via LOOCV are
presented in Table 8, which is actually a subset of Table 3. Figure 5 indicates that the three
submarkets are best modeled using large cutoff distance values and lag widths. Nevertheless,
only submarket 3 yields proper results according to the R-Squared index.

Figure 5: Selected Semi-variogram Models for the Set with Three
Submarkets Using Clustering Criterion 2 (Area and Age).
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Table 8: Leave-One-Out Cross-Validation of the Model Selected for Case B
(Set with Three Submarkets) Using Clustering Criterion 2 (Area and Age).

Submarket Cluster ID Model Lag Cutoff R-squared RMSE MAPE
Width Distance

1 14 Matérn 1930 9650 -0.1258 208438795  26.82
15 spherical 1594 7972 0.2201 86942896 42.34
3 16 circular 1106 7743 0.5811 98650579  32.87

The selected variograms were used to obtain the mean values on the residential property
map, as shown in Figure 6 shows the interpolated kriging map (which is masked by the
transport network) of each cluster in Medellin. This is an example of the isoline maps that
can be obtained from kriging interpolation; in this case, it shows the results of 3 submarkets
applying criterion 2 (area and age). In Table 8, the mean absolute percentage error (MAPE)
of submarkets 1, 2, and 3 reached 26.82%, 42.34%, and 32.87%, respectively.
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Figure 6: Map of Predicted Property Prices (Set With 3 Clusters)
Obtained Applying Criterion 2 (Area and Age)
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Figure 7 shows the Multidimensional Index of Living Conditions (MILC) according to the
Encuesta de Calidad de Vida (Quality of Life Survey) 2 in the year 2018 of the 16 comunas
(districts) of Medellin. This index serves as a global indicator of living conditions (on a scale
from 1 to 100) for each district (Alcaldia de Medellin, 2019). According to the isoline maps
of Figure 7, the southeast area of the city, which is district 14 (El Poblado), concentrates
the most expensive housing. In fact, the MILC of district 14 is the highest.

The two-stage methodology approach offers interesting insights into the behavior of each
submarket in relation to the living standards in the area of the dwellings. According to
Figure 6, a dwelling of the submarkets 1 or 2 can cost up to three times more for being
located in an area with a high MILC (such as in the southeast of the city), rather than
being located in the northern side of the city (districts 1 to 7), where the MILC is under the
average of the city (49.3). These differences in prices are much more noticeable for properties
of submarket 3 (typically recently built and small apartments, according to Table 2). In this
case, a dwelling can cost up to six times more for being located in the district with the
highest MILC.

The predictions plotted in Figure 8 show the discrepancies in prices (log was applied for
the sake of visualization) between Medellin Property Price Register and the values predicted
for the third cluster, which is the best fit by a line with intercept 5.86 and slope 0.69. The fact
that the dashed line (adjusted to the points) is above the solid line in the early phases of the
chart indicates that, when property values are estimated, the kriging method overestimates
low values and underestimates high ones.

2The Encuesta de Calidad de Vida (Quality of Life Survey) is an instrument whose purpose is to monitor and
measure the socioeconomic conditions of the inhabitants of the 16 districts and 5 townships that make up
the city of Medellin. It is a primary source of information that allows knowing indices on issues of marked
importance such as population, housing, households, education, workforce, health, and social security.
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Figure 7: Multidimensional Index of Living Conditions of the 16 Districts
in Medellin (Alcaldia de Medellin, 2019)

Figure 8: Observed vs. Predicted Property Prices (Set with 3 Clusters) Of
Cluster 3 Applying Criterion 2 (Area and Age)
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5. CONCLUSIONS AND RECOMMENDATIONS

In this study, we modeled house prices using a mixed two-stage model for mass appraisal and
a sample of 293 second-hand house valuations conducted between 2014 and 2019 in Medellin,
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Colombia. During the first stage, 2, 3, and 4 submarkets were generated by the k-means
algorithm implementing 5 clustering criteria. The first criterion considered only the housing
area; the second one the area and age of the property; and so on until criterion 5, which took
into account the area, age, number of rooms, number of bathrooms, and type of property
(house or apartment). During the second stage, by means of different kriging models, we
incorporated spatial dependency into the estimation of house prices.

The results show that the number and geographic distribution of the housing units whose
information is known are important to implement the model in practice. A higher number
of submarkets implies lower number of housing units in each submarket. This implies larger
areas for which there is no available information, increasing the uncertainty of the model
Consequently, house price models that use clustering and kriging should strike a balance
between the number of submarkets, the number of housing units per submarket, and their
geographic distribution. Nevertheless, such balance depends directly on the size and geo-
graphic distribution of the housing units in the sample.

Property area and age turned out to be the best criterion to create submarkets, even
better than a combination of the area and age with other characteristics (e.g., number of
rooms, number of bathrooms, and type of property). This is due to the workings of the
k-means clustering algorithm, which does not differentiate the importance of the variables
or the ranges of the values they can take.

The best-fit kriging model was obtained using cross-validation, sweeping different pa-
rameters of the empirical variogram, which were adjusted by means of different theoretical
models. In all the cases, it was shown that the most suitable model for the different clusters
was circular, appearing 55.6% of the time, while its Gaussian, spherical and Matérn coun-
terparts did so in proportions of 15.6%, 13.3%, and 11.1%, respectively. The least common
model was exponential (4.4%). The mean Lag Width was 1064 m, and the cutoff distance,
6497 m.

The effect of the number of submarkets was studied in three cases with five clustering
criteria by sweeping different parameters of the empirical variograms adjusted to specific
theoretical models. In general, each clustering criterion (set of submarkets) produced one
well-modeled submarket and other submarkets that achieved poor results. When considering
the weighted average values for the R-squared and MAPE values for each of the three cases,
the best behavior is found for Case B, with mean values of 0.3446 and 35.05% for R-Squared
and MAPE, respectively.

The criterion effect was observed by taking the weighted average of the five different
criteria. Compared to criterion 1 (area), criterion 2 (area and age) generates a noticeable
improvement in the modeling as the R-Squared increases from 0.2720 to 0.3409. However,
criteria 3 and 4 present no substantial improvement compared to criterion 2. Criterion 5
presents the highest R-Squared value.

An explanation of these results could be that variable age provides additional and valuable
information for the model that only considers variable area. The number of bedrooms and
bathrooms is dependent on the area, and that is why the model shows no improvement.
Finally, providing the model the information about whether it is an apartment or a house
can improve the prediction results.
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The best results were obtained as follows. First, the sample was divided into three
submarkets (Case B). Second, property area and age (criterion 2) were employed to classify
the housing units. Then, a Matérn kriging model was applied to submarket 1; a spherical
kriging model, to submarket 2; and a circular kriging model, to submarket 3. The MAPEs
obtained for such submarkets were 26.82%, 42.24%, and 32.87%, respectively. These results
are in line with Calka (2019), who indicated that “the minimum number of points in a cluster
should not be below 30, but [...] to obtain an estimation error of less than 10% it should be
around 200”. In this case, the number of housing units in each cluster was 54, 65 and 144,
respectively.

The two-stage methodology approach offers interesting insights into the behavior of each
submarket in relation to the living standards in the area of the dwellings. A dwelling of
the submarkets 1 or 2 can cost up to three times more for being located in an area with a
high Multidimensional Index of Living Conditions (MILC) rather than being located in an
area where the MILC is under the average of the city. These differences in prices are much
more noticeable for properties of submarket 3 (typically recently built and small apartments)
which can cost up to six times more for being located in an area with high MILC. This could
mean that the prices of dwellings in submarket 3 benefit much more from public and private
amenities than bigger and older constructions in submarkets 1 and 2.

The application of the methodology presented in this article could play an important role
in the development of land use policies for the design of soil management policies and overall
land planning. The difference in prices of a submarket made up mainly of recently built
and small apartments calls the attention. This could indicate the existence of speculative
practices that increase the price of this kind of properties. Therefore, new and small housing
units should be under special control.

The relationship between submarkets, house prices and living standards can be an impor-
tant tool in the identification of zones with a higher need for government interventions that
promote more equitable land development. It also could help with more efficient funding via
an improvement of the recouping of public investments by the state in the areas where the
house prices benefit the most from public amenities.

Future studies of mixed house price models based on clustering and kriging should use
classification algorithms other than the k-means to create the submarkets and include vari-
ables such as environmental pollution, health care, and education indexes.
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