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Abstract: This paper examines the effects of four significant tornadoes on housing prices in Moore,

Oklahoma. We use a hedonic difference-in-difference approach by considering transactions made preceding

and following major tornadic events in Moore (occurring in 1999, 2003, 2010, and 2013). Our dataset spans

nearly 30,000 housing transactions between 1990 and 2020. The length of tornado impacts is evaluated using

a set of time indicators for the years leading up to (and after) the tornadoes. We find a 2-5% decrease in

housing prices during the first year after a tornado for houses in the destructive path. However, no such

impacts exist in years 2-7. We also employ three different specifications (OLS, spatial lag, and spatial error)

to find the most appropriate model for considering the potential spatial processes at work. The results are

largely similar across specifications.
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1. INTRODUCTION

Every year, tornadoes cause tremendous damage to property and loss of life in the United
States. Oklahoma is one of the states struck more frequently by tornadoes, as it is located in
“Tornado Alley”, an area where tornadoes are disproportionately frequent (National Oceanic
and Atmospheric Administration National Weather Service, National Centers for Environ-
mental Information, 2020b). In particular, the city of Moore, Oklahoma has experienced
several damaging tornadoes in the recent past, with the most destructive one taking place
in 20131. According to Romanic et al. (2016) who constructed a model for tornado loss
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assessment based on historical tornado footprints in Oklahoma, a tornado as destructive as
the 2013 tornado in Moore could take place in the state of Oklahoma every 10-12.5 years.
Tornadoes not only cause immediate physical damage to the cities they strike, they may
also instill a sense of fear in the residents (or prospective residents) of the area. The fear
that tornadoes could strike again lingers in the collective memory, potentially influencing
residents’ future housing decisions and sometimes prompting them to move in order to find
a “safer” place to live. The physical damage caused by tornadoes and the sense of insecu-
rity that prompts people to leave the affected areas can result in home buyers and sellers
decreasing the value of homes in the affected areas, reflected by lower house prices.

Regardless of the sense of insecurity caused by a natural disaster such as a tornado,
making the decision to move to a different city or state is not always an immediately viable
option. Housing accounts for a large portion of household finances (Simmons and Sutter,
2007), and moving to a different city or state involves high opportunity costs – including
those associated with work and family/friends (Graif, 2016). Moving to a different city or
state often entails giving up a job and finding a new job closer to the updated residence.
Even moving to a different location within the same city could prove difficult, with housing
prices in neighborhoods considered “safer” rising due to a shortage of housing supply in the
city as a whole (Malagarie, 2019). Because of the difficulties associated with moving to a
different neighborhood, city, or even state imply, many people end up staying in their original
properties regardless of the sense of fear instilled by a tornado. Therefore, the housing prices
in the affected areas could remain relatively stable in the aftermath of a tornado, even when
there was an immediate impact on the resident’s sense of security.

The existing literature offers little empirical evidence on the effects of tornadoes on hous-
ing prices. The limited studies on this general topic focus on the impact of historical tor-
nadoes on future housing development locations (Hall and Ashley, 2008) or impacts at the
city level (Donadelli et al., 2020). Hall and Ashley (2008) used panel data to show that new
urban areas in Northeastern Illinois avoided past tornado tracks as they developed, even
though urban sprawl continued to increase the median value of homes in areas affected by
tornadoes. Donadelli et al. (2020) also used panel data and found negative effects of torna-
does on city-level housing prices using United States housing price index data and tornado
records from five different regions. The frequency of historical tornadoes was counted and in-
corporated into Ordinary Least Squares (OLS) models as dummy variables (Donadelli et al.,
2020). Notably, neither of these papers incorporates a hedonic approach that can capture
the impact of specific housing characteristics. There is also research estimating property
losses from tornadoes. In particular, Elsner et al. (2018) combine data on 3,233 tornado
reports across Florida from 1950 through 2015 with property assessments at the time of the
event, but do not consider future housing sales as part of their analysis.

Alternatively, there is a fair amount of literature on the effects of other natural disasters
such as floods, storms, wildfires, rising sea levels, hurricanes and earthquakes on housing
prices. Most of these studies found that natural disasters have discounting effects on housing
prices (Murdoch et al., 1993; Pompe and Rinehart, 1995; Mueller et al., 2009; Beltrán et al.,
2018; Beck and Lin, 2020; Graff Zivin et al., 2020). Hedonic models are also more common
in this field; these models control for the impacts of housing characteristics such as square
footage and the number of bathrooms on the price. For example, several studies used OLS
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models with dummy variables that accounted for the potential impact of wildfires (Mueller
et al., 2009), floods (Beltrán et al., 2018), sea level rise (Beck and Lin, 2020), and hurricanes
(Graff Zivin et al., 2020) on local housing values. Notably, Graff Zivin et al. (2020) – whose
methodology we follow in this paper – finds a positive impact on housing prices for houses
sold in locations impacted by Florida hurricanes in the following 1-3 years. They argue that
this positive relationship is due to the cost of reconstructing houses in desirable areas, and
is the result of a negative supply shock. However, they also find a significant decrease in the
number of housing transactions made in the affected areas in the year following a hurricane
event.

An interesting component of this analysis is the mechanism by which historical tornado
paths could influence housing prices. If there were evidence of path dependency for tornadoes
– that is, if future tornadoes were more likely to occur in the same paths as prior events –
then confirmation of a price decline in those locations would demonstrate a rational response.
In this case, the potential risk would be incorporated into the sales price; buyers of such
properties receive a discount due to their willingness to accept a higher probability of future
tornado damage. Alternatively, if there is no evidence that tornadoes are likely to follow
the same historical path, then pricing in risk into houses on those paths is irrational. In
this case, even though tornadoes are equally likely to hit other parts of the city, the fear of
history repeating itself influences the housing market equilibrium.

The science regarding tornado path dependency is relatively straightforward. While
some regions (and even specific cities) are more likely to see tornadoes than others, there is
no evidence to suggest tornadoes will follow the direct paths of their predecessors (Brooks
et al., 2003; Strader et al., 2017; Pillion, 2021).2 Thus, any pricing impact uncovered in this
analysis – which considers only a single city identified as having a high likelihood of events –
represents an intriguing form of irrationality where house buyers and sellers settle on a price
influenced by expectations that are not grounded in reality.

The aim of this paper is to examine the effects of four significant tornadoes on housing
prices in Moore, Oklahoma. We use a difference-in-difference approach by considering trans-
actions made preceding and following major tornadic events in Moore. Our data includes
nearly 30,000 housing sales from 1990 – 2020, and studies the impacts of tornadoes occurring
in 1999, 2003, 2010, and 2013. Our econometric specification isolates transactions along the
destructive paths of the four major tornadoes under evaluation. A set of time indicator
variables for the years leading up to (and after) the tornadoes allows us to document the
length of impact in these locations. Our focus on a single city is unique in the existing liter-
ature, and our examination adds to the small body of evidence on this topic. In particular,
because tornadoes typically affect only relatively small swaths of land (as opposed to other
natural disasters like hurricanes or earthquakes), our intra-city focus can document the de-
gree to which proximity to a historical tornado path matters for future housing purchases in
locations prone to such events.

When measuring the effects of natural disasters on housing values, it may be important
to account for spatial autocorrelation. A significant amount of the previous literature on this

2Pillion (2021) cites leading researcher Harold Brooks: “The evidence mostly points to random chance as to
why some communities are leveled and some are spared.”
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subject has failed to do so, and has used OLS models that are ineffective in forming unbiased
and efficient estimates when spatial patterns are present (Loftin and Ward, 1983; Anselin,
2010). Dubin (1992), for instance, found that housing prices were frequently impacted by
neighborhood or other extrinsic characteristics of the properties, such as accessibility from
urban areas. Underlying spatial patterns need to be tested and accounted for. Two simple
spatial models can successfully account for spatial autocorrelation or heterogeneity: the
spatial lag model and the spatial error model (Can, 1992; Anselin, 2010).

The spatial lag model has been frequently used when analyzing the effects of natural
disasters on housing prices. This model assumes that the dependent variable, in this case,
housing prices, is not only affected by the specific characteristics of the home itself, but also
by the value of neighboring house prices (LeSage and Pace, 2009). In essence, the spatial lag
model allows for the estimation of spillover effects, as it assumes that the spatially weighted
average of housing prices in a neighborhood affects the price of each house directly (Kim
et al., 2003). For instance, the spatial lag model has been used to analyze how housing prices
are affected by receiving a flood risk designation (Posey and Rogers, 2010), to demonstrate a
negative impact of perceived flood risk on local housing prices (O’Neill et al., 2016), and to
explore whether there is a “broadband premium” in the rural housing market (Conley and
Whitacre, 2020).

The spatial error model, on the other hand, assumes the spatial effects are included in the
error term of the specification. This means that instead of directly affecting the dependent
variable, the spatial process at work influences shocks to unobserved terms (the errors). Even
though this model does not explicitly account for spillover effects, it is useful when analyzing
variables that likely have spatial patterns, but whose spatial effects are difficult to quantify
or measure (Anselin, 2003). There is no previous literature that we are aware of that uses
spatial error models to analyze the impact of tornadoes on housing prices. In a broader scope,
several studies use spatial error models in a hedonic house pricing context. Bin et al. (2011)
used a spatial error model to consider spatial heterogeneity while measuring the impact of
sea-level rise on housings in coastal regions. Baltagi and Bresson (2011) also used spatial
error models to handle (and test) the spatial effects and potential heterogeneity for housing
prices in Paris. Thus, the hedonic house pricing literature has incorporated OLS, spatial
lag, and spatial error specifications. This paper uses the Lagrange multiplier test to find the
most appropriate model to estimate the underlying spatial effects at work (Anselin, 1988),
while also considering the theoretical rationale for why a particular specification might be
preferred.

2. DATA

This study uses 31 years (1990-2020) of housing transaction data provided by the county
assessor’s office from Cleveland County, Oklahoma. Cleveland County has a median house-
hold income of $62,863, which is higher than the median household income of $54,449 for the
state of Oklahoma (United States Census Bureau, 2020). The city of Moore was chosen as
the subject of this study because of its history with significant tornadoes, and because it is
one of the representative cities in Cleveland county. Moore has a similar median household
income to Cleveland county ($64,810) and accounts for about 22 percent of the county’s
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Table 1: Summary Statistics of Four Tornadoes over Fujita Scale
4 in Moore, OK.

Year Classification Length (miles) Width (miles) Killed Injured # Impacted Future House Sales
1999 EF5 38 1.0 36 583 5,412
2003 EF4 17 0.4 0 134 1,641
2010 EF4 24 1.1 2 49 4,290
2013 EF4 14 1.1 24 212 3,235

Source: Storm Prediction Center, National Oceanic and Atmospheric Administration (NOAA).

population (United States Census Bureau, 2020). There were 28,969 home sales transac-
tions made during 1990 - 2020. We include all of these transactions as part of our OLS
specification. However, constructing spatial weight matrices does not allow using multiple
points with the same location, so we follow the approach used in Hoen et al. (2015) and
keep only the most recent transacted record. This resulted in 15,066 housing sales transac-
tions for the spatial models (including tests of whether OLS by itself is appropriate). Our
datasets contain the sales price of the house, the date of sale, and the associated physical
characteristics of the property. These characteristics include the house area in square feet,
the number of bedrooms and bathrooms, the year the house was built, the square footage
associated with any existing garage, and the location of the house in latitude and longitude.
The age of the house was calculated by subtracting the sales transacted year from the year
it was built.

Historical tornado records were collected from the National Oceanic and Atmospheric
Administration National Weather Service (NOAA). Tornadoes have hit Moore nine times
since 1998, and four of them have been Fujita scale 4 (or Enhanced Fujita scale 4) or over.
The Fujita (or Enhanced Fujita) scale consists of six categories, ranging from zero to six, with
categories four or above considered devastating or incredibly damaging (National Oceanic
and Atmospheric Administration National Weather Service, 2020). We focus only on the
four out of the nine tornado events in Moore since 1998 that were evaluated as four or above
on the Fujita scale. This was done because the main objective of this paper is to assess
the impacts of historical tornadoes that have caused significant property damage – and have
likely lived on in residents’ memories. The four tornadoes in Moore, Oklahoma included
in the study took place in 1999, 2003, 2010, and 2013. Figure 1 demonstrates the paths of
these four tornadoes, and shows the distribution of the values of housing sales transactions in
Moore, OK during the 1990 – 2020 period. Table 1 provides details on the lengths, widths,
and number of people killed/injured due to these events.

Distances were calculated from each house to the closest point of each tornado’s path.3

Following Graff Zivin et al. (2020), we use this distance to construct a dummy variable
for whether a house was considered to be in the destructive path of the tornado. The
length and width of each tornado varied (Table 1), with several being over 1 mile wide.
Houses within 1.25 times the documented width of each tornado are considered as inside the

3As shown in Figure 1, the tracks of tornadoes are somewhat random across the town. However, the tracks of
older tornadoes (1999 and 2003) passed the northwest side of Moore, Oklahoma. Unlike these two previous
tornadoes, the 2010 tornado passed through the southeast side, and the 2013 tornado moved through the
middle of the city.
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Figure 1: Distribution of Housing Values in Moore, OK and
Historical Tornadoes Track That Had Over Four (4) Fujita Scale

in 1999, 2003, 2010, and 2013.

destructive path. The number of houses impacted by each event is shown in Table 1. As
the methodology section below details, we use the date and location of each transaction to
construct a difference-in-difference framework that allows for comparisons of sales before and
after a tornado occurs. The approach also allows us to estimate the length of the potential
impacts on housing prices by considering the amount of time elapsed since the last tornadic
event.

3. METHODS

3.1. Hedonic Pricing Model

According to Rosen (1974), hedonic prices are determined based on the various associated
characteristics of a product. The literature on housing prices frequently uses hedonic models
to estimate prices as a function of housing attributes or characteristics such as square feet,
the number of rooms, building age, etc.(Can, 1992; Sirmans et al., 2005; Ottensmann et al.,
2008). The literature on the effects of natural disasters on housing prices builds on these
models to estimate how such disasters might affect sales prices, after controlling for the
characteristics of the house (Murdoch et al., 1993; Mueller et al., 2009; Beltrán et al., 2018).
These studies have used different ways to quantify the effects of natural disasters on housing
prices. Most of them have used the distance from the hazardous area and the frequency of
damage as hedonic variables affecting housing prices (Posey and Rogers, 2010; O’Neill et al.,
2016; Donadelli et al., 2020).

We build on these efforts to develop a hedonic price model estimating the effects of
historical tornadoes on housing prices in Moore. Our specifications control for the physical
characteristics of the house, allow for year-over-year price shifts (year fixed effects), and
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ultimately estimate the impacts of being located in the path of a prior damaging tornado.
We begin by running our hedonic housing price model using ordinary least squares (OLS),
ignoring any potential spatial effects as much of the prior literature has done. We then assess
the Moran’s I statistic on the residuals and consider an alternative spatial error model to
address these issues as a robustness check.

As noted above, the present study focuses on four tornado events, which took place in
1999, 2003, 2010 and 2013. It is important to note that although tornado paths are random,
unlike many other natural disasters, there have often been times when tornado paths have
overlapped and moved in the same direction (Donadelli et al., 2020). Therefore, instead of
using four different distances from the tornado path, we use an indicator variable before and
after the tornado for houses located within 1.25 times the width of each tornado path. We
follow Graff Zivin et al. (2020) and estimate the OLS model as:

lnP itq =
∑
k

αkXkitq +
7∑

τ=−9

βτTor
τ
itq + γt + δq + εitq (1)

where lnPitq is a logarithm of the housing price for location i in year t and the quarter
of the year q. Xkitq are the housing characteristics k such as the number of bathrooms,
house and garage size, and age of house i;4 Torτitq is a set of indicators documenting the
time dimension of the transaction in relation to a tornadic event (for example, Torτitq= 1
if the transaction takes place within a tornado path. τ = 0 indicates the sales transaction
in the first twelve months after a tornado, τ = 1 the next twelve months, and so on; a
negative τ indicates a transaction made before the tornado); γt are fixed year effects. δqare
quarter-of-year fixed effects capturing seasonality in the housing market. And εitq is error
term which is assumed to be independent and identically distributed (i.i.d.): εitq ∼ N (0, σ2).
Our indicator variables run from 9 years prior to a tornado to 7 years after5, allowing for the
set of βτ estimates to document the impact on housing prices both before (where we expect
no impact) and after an event (where one may exist). Houses that were never in the path of
a destructive tornado have 0’s for all Torτitq measures. As a simple robustness check, we also
estimate a standard difference-in-difference model where all of the year indicators Torτitq are
replaced by a single dummy variable taking value 1 if the sale took place up to three years
following a tornado (event years 0-2).

The Moran’s I statistic (Cliff and Ord, 1981) of the residuals from these OLS models are
also obtained in order to measure the presence of spatial dependence in the residuals.6 This
type of Moran’s I test is typically used to explore whether or not using a spatial model is
appropriate. If the Moran’s I statistic suggests that the residuals of the OLS model exhibit
spatial dependence, the conclusion is that the OLS model is not the appropriate model
to use. Lagrangian Multipliers (LM) associated with the residuals can suggest alternative

4Some hedonic housing models include variables such as income levels or racial characteristics of the neigh-
borhood. These are not available annually for the full 30-year period under analysis here.

5We choose these years because they allow for all observations to be included (i.e., housing transactions in
1990 are 9 years prior to the first 1999 tornado and transactions in 2020 are 7 years after the last 2013
tornado).

6Recall, however, this test can only be run on a subset using the most recent transactions (i.e., removing
earlier sales of the same house). This significantly reduces our sample size.
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spatial models that could potentially capture the spatial patterns present (Anselin, 1988;
Anselin et al., 1996).

We use two simple spatial models as alternatives to the OLS specification: spatial lag
and spatial error models. The spatial lag model acknowledges that the dependent variable
(housing price) in one location may be impacted by neighboring values, and it explicitly
models this relationship. The spatial lag model, therefore, assumes that endogenous feedback
effects between neighbors are present, and the spatial parameter represents the magnitude
and direction of that feedback. On the other hand, the spatial error model estimates the
effects of spatial processes in the error term. The resulting spatial parameter value is not
as easy to interpret compared to the spatial lag model. However, the spatial error model
has the advantage of accounting for potential missing variables that could be difficult to
quantify.

We use both spatial models in our analysis since we believe that the appropriate way to
capture the spatial processes at work is an open question. On the one hand, tornadoes can
be damaging and destructive, directly affecting housing prices in the affected areas. These
lowered prices could then directly affect their neighbors in a spatial lag model. On the other
hand, tornadoes can indirectly affect housing prices by increasing the perceived risk of the
residents of the affected areas (i.e., spatial heterogeneity may exist). This may prompt the
value of the properties in such areas to decrease over time, and a spatial error model could
be more appropriate to capture this indirect effect.

Both spatial models include an inverse distance weight matrix with a 2 km threshold
(i.e., all households outside of the threshold receive zero weight). We estimate spatial lag
and error models as extensions of the main specification in (1). The spatial lag model is:

lnP itq = ρWlnP itq +
∑
k

αkXkitq +
7∑

τ=−9

βτTor
τ
itq + γt + δq + εitq (2)

and the spatial error model is:

lnP itq =
∑
k

αkXkitq +
7∑

τ=−9

βτTor
τ
itq + γt + δq + uitq;uitq = λWuitq + εitq (3)

where ρ is a spatial autocorrelation parameter for the spatial lag models; W is an n x n
inverse distance spatial weight matrix (n is the number of observations); λ is the spatial
parameter for the spatial error models; uitq is the error term for spatial error models that
assumed to have correlated errors; and εitq is assumed to be a vector of i.i.d. errors. We
recognize that using only the last home transaction may bias our data, particularly if houses
impacted by an earlier tornado are sold again later – in which case they would be dropped.
Thus, we argue that our “full-sample” difference-in-difference specification is the most suit-
able for identification, and include the reduced-sample OLS and spatial models only as a
robustness check.
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Table 2: Summary Statistics of Housing Sales Transactions by
Moore, OK, 1990-2020.

Obs. Mean Std. Dev. Min Max
Housing Price 28,969 118,657 75,397 30,000 1,930,500
Bedrooms 28,969 3 0 1 7
Bathrooms 28,969 2 1 1 6
Building Age 28,969 20 17 1 97
Square Feet 28,969 1,558 480 480 7,030
Garage Square Feet 28,969 481 144 0 1,785

4. RESULTS

Table 2 displays the summary statistics for the housing transactions during 1990-2020 in
Moore, Oklahoma. The total number of housing sales is 28,969, with an average house price
of $118,657. The average area of the property is 1,558 ft2, and an average garage size is 481
ft2. On average, the number of bedrooms and bathrooms are three and two, respectively. In
addition, the average building age is 20 years, but the range of ages is large going from a
minimum of 1 year to a maximum of 97 years, with a standard deviation of 17 years. These
statistics are largely similar to our reduced sample of 15,066 used in the spatial specifications.

The results of our main OLS specifications (both full and reduced sample) are in Table 3.
The effects of housing characteristics on housing price were similar regardless of the model
and generally had the expected signs and magnitudes. The area of the property (square
feet) and garage (garage square feet) positively impact the housing price, while building age
is associated with a decrease in housing price. Housing square footage displays diminishing
marginal returns as evidenced by the opposite sign on its squared term; this also holds for
building age in the reduced sample. The number of bathrooms shows a positive coefficient
but no statistical significance. The quarter of sale is highly significant with quarters 2-4
resulting in higher sales prices than quarter one. These results are in line with intuition
regarding the real estate industry, and reflect relationships demonstrated in the previous
literature (Can, 1992; Ottensmann et al., 2008).

The main variables of interest are the annual indicator variables based on whether the
house was in the path of a tornado. The full OLS model shows no impact of being in the path
of a tornado in the years leading up to a tornadic event, as expected (Table 3; coefficients
with 95% confidence intervals in Figure 2). It also documents a 2.2% reduction in sales price
the year immediately following a tornado. Notably, these impacts disappear after the first
year, and remain indistinguishable from zero for event years 1 – 7. The standard difference-
in-difference specification in column (2) finds a marginally significant and smaller effect of a
0.9% price reduction for sales taking place in years 0-2 following a tornado.
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Figure 2: Tornado Effects on Housing Values – Full Sample

Notes: Estimates from the OLS model including repeated sales transactions are plotted with their 95% confidence intervals. The results are based on the full
sample of Moore housing sales (N=28,969).

For the reduced-sample OLS model (that only includes the most recent sale for all houses),
the returns to housing characteristics are similar (Column 3). The estimates of tornado
impacts are even stronger, although with a surprisingly significant (and likely spurious)
effect 3 years before an event.7 Here, the price penalty for a house in the path of a tornado
occurring less than one year (event year 0) prior is 5.3%, more than double the estimate from
the full sample. The year-event indicator coefficients and their 95% confidence intervals are
shown in Figure 3. The standard difference-in-difference specification for the reduced sample
(Column 4) shows a highly significant price reduction of 2.2% in event years 0-2.

Appendix A contains the results of the reduced-sample OLS model (specification (3)
in Table 3) alongside those for the spatial lag and error models. The Moran’s I of the
residuals from the reduced-sample OLS model demonstrates that spatial autocorrelation
exists (p-value ≤ 0.001). However, the value of the Moran’s I statistic is not large (0.020).
In addition to the Moran’s I test, traditional and robust versions of the Lagrange Multiplier
tests (Anselin et al., 1996) for both the spatial lag and spatial error models were highly
statistically significant (all p-values < 0.0001), leaving us to conclude that either model
could be used to analyze the effect of tornadoes on housing prices – and that no strong
evidence exists favoring one over the other.

As Appendix A demonstrates, the coefficients on the housing characteristics for both the
spatial lag and spatial error models are largely similar to those from the OLS specification.
Both models have highly statistically significant coefficients for the resulting spatial param-
eters (ρ and λ, respectively). The values on square footage (for both building and garage)

7We hypothesize that this spurious but significant prior-year coefficient may be the result of house re-sales
that were affected by multiple tornadoes. For example, a house sold in 2000 that was impacted both by the
1999 tornado (event year +1) and the 2003 tornado (event year -3).
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Figure 3: Tornado effects on housing values – Reduced Sample

Notes: Estimates from the OLS model including repeated sales transactions are plotted with their 95% confidence intervals. The results are based on the full
sample of Moore housing sales (N=28,969).

are slightly lower than the initial OLS estimates, likely due to the bias of omitting relevant
spatial characteristics. Additionally, the spatial error model demonstrates a positive impact
of bathrooms – an intuitive result that is not observed in the OLS or spatial lag specifica-
tions. Overall, however, the omitted variable bias does not appear to be severe; and the
differences across specifications are minimal.

The estimates of tornado impacts are again similar to the OLS results for both the spatial
lag and error specifications. Years leading up to a tornado are generally not statistically
significant, with the exception of a likely spurious 3% increase 3 years prior. The findings here
reinforce those from our primary, full-sample specification and suggest a highly significant
impact of tornadoes on housing prices, but only for the year immediately following the
event. The spatial specifications find a price reduction of between 4.4% and 5.1% in the year
immediately following a tornado, compared to a 5.3% reduction under OLS.

Even though the spatial lag models have a slightly better fit (lower AIC and larger
log-likelihood) of the two specifications presented (Akaike, 1973), we do not have strong
evidence on which model is statistically better. From a theoretical perspective, we argue
that the spatial error model is preferred because the spillovers in the lag model are global in
nature (LeSage, 2014). These types of spillovers have endogenous feedback effects, implying
that a change in one region will result in a new long-run steady state equilibrium where not
only neighbors but neighbors-of-neighbors (and so on) are affected. LeSage (2014) argues
that these global spillovers are rare in regional science situations; in the context of housing
prices, it is difficult to make an argument for their existence. Regardless, the takeaways from
the two models are essentially the same as for the OLS models – that tornadoes do impact
housing prices immediately following the event. The inclusion of spatial parameters seems
to overcome a small bias in specific housing characteristic coefficients, but the changes are
not economically meaningful.
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5. CONCLUSIONS

The objective of this study was to use a hedonic housing price model to examine whether
four distinct damaging tornadoes affected future housing prices in Moore, Oklahoma. We use
indicator variables for every pre-/post-tornado year associated with four historical tornado
paths to account for tornado effects on housing prices, while controlling for household-specific
factors like building age, square footage, and garage size. The tornadoes used in the analysis
were Fujita scale 4 (or Enhanced Fujita scale 4) or over, considered devastating or incredibly
damaging, and took place in 1999, 2003, 2010, and 2013. The OLS model that includes all
sales between 1990 and 2020 suggests that recent tornado history does matter, with a price
reduction of 2.2% for houses in the path of an event during the following year. When our
sample is restricted to only the latest sales of each property (which is required to construct
spatial weight matrices), the results become even stronger, with price reductions of over 5%
in the event year 0. We find evidence of spatial dependence, suggesting that a spatial lag or
spatial error model might be more appropriate. However, the results from these specifications
fundamentally mirror those from OLS.

We argue that the sales prices decreases in the year following a tornadic event are primar-
ily driven by an increased perceived risk experienced by the existing (or potential) residents
of areas affected by prior tornadoes. A remarkable feature of this perceived risk is that it is
inherently irrational, given the randomness with which tornadoes strike. Notably, we did not
find any evidence of longer-term or delayed impacts lasting more than a year post-tornado.
Further research should attempt to confirm this finding and examine whether a longer-term
relationship might hold in other geographies.

Our study adds to the limited body of evidence on how smaller-scale natural disasters such
as tornadoes impact housing prices. Recent hedonic work has tended to incorporate spatial
lag models more than spatial error ones. However, our results demonstrate that neither is
a marked improvement over simple OLS in our specific case. The results here suggest that
repercussions from tornadoes impact the local housing market in the year following an event.
Replicating this study in a non-tornado-prone region would be an interesting test of whether
a similar result is found where the perceived risk is markedly lower.

©Southern Regional Science Association 2021.



70 The Review of Regional Studies 52(1)

REFERENCES

Akaike, Htrotugu. (1973) “Maximum Likelihood Identification of Gaussian Autoregres-
sive Moving Average Models,” Biometrika, 60(2), 255–265. http://doi.org/10.1016/
0166-0462(92)90004-K.

Anselin, Luc. (1988) “Lagrange Multiplier Test Diagnostics for Spatial Dependence and
Spatial Heterogeneity,” Geographical Analysis, 20(1), 1–17. http://doi.org/10.1111/j.
1538-4632.1988.tb00159.x.

Anselin, Luc. (2003) “Spatial Externalities, Spatial Multipliers, and Spatial Economet-
rics,” International Regional Science Review, 26(2), 153–166. http://doi.org/10.1177/
0160017602250972.

Anselin, Luc. (2010) “Thirty Years of Spatial Econometrics,” Papers in Regional Science,
89(1), 3–25. http://doi.org/10.1111/j.1435-5957.2010.00279.x.

Anselin, Luc, Anil K Bera, Raymond Florax, and Mann J Yoon. (1996) “Simple Diagnostic
Tests for Spatial Dependence,” Regional Science and Urban Economics, 26(1), 77–104.
http://doi.org/10.1016/0166-0462(95)02111-6.

Baltagi, Badi H and Georges Bresson. (2011) “Maximum Likelihood Estimation and La-
grange Multiplier Tests for Panel Seemingly Unrelated Regressions with Spatial Lag and
Spatial Errors: An Application to Hedonic Housing Prices in Paris,” Journal of Urban
Economics, 69(1), 24–42. http://doi.org/10.1016/j.jue.2010.08.007.

Beck, Jason and Meimei Lin. (2020) “The Impact of Sea Level Rise on Real Estate Prices
in Coastal Georgia,” Review of Regional Studies, 50(1), 43–52. http://doi.org/10.52324/
001c.11643.

Beltrán, Allan, David Maddison, and Robert JR Elliott. (2018) “Is Flood Risk Capitalised
Into Property Values?,” Ecological Economics, 146, 668–685. http://doi.org/10.1016/j.
ecolecon.2017.12.015.

Bin, Okmyung, Ben Poulter, Christopher F Dumas, and John CWhitehead. (2011) “Measur-
ing the Impact of Sea-Level Rise on Coastal Real Estate: A Hedonic Property Model Ap-
proach,” Journal of Regional Science, 51(4), 751–767. http://doi.org/10.1111/j.1467-9787.
2010.00706.x.

Brooks, Harold E, Charles A Doswell, and Michael P Kay. (2003) “Climatological Estimates
of Local Daily Tornado Probability for the United States,”Weather and Forecasting, 18(4),
626–640. http://doi.org/10.1175/1520-0434.

Can, Ayse. (1992) “Specification and Estimation of Hedonic Housing Price Models,” Regional
Science and Urban Economics, 22(3), 453–474. http://doi.org/10.1016/0166-0462(92)
90039-4.

Cliff, Andrew David and J Keith Ord. (1981) Spatial Processes: Models & Applications.
Taylor & Francis, London: Pion.

Conley, Kelsey L and Brian E Whitacre. (2020) “Home Is Where the Internet Is? High-speed
Internet’s Impact on Rural Housing Values,” International Regional Science Review, 43(5),
501–530. http://doi.org/10.1177/0160017620918652.
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A. APPENDIX A

Table A1: Results of OLS, Spatial Lag, and Spatial Error Models with
Reduced Sample

OLS Spatial Lag Spatial Error
(1) (2) (3)

Intercept 9.872*** (0.027) 7.561*** (0.138) 9.943*** (0.028)
Square Feeta 0.732*** (0.015) 0.690*** (0.015) 0.691*** (0.016)

Square Feet2 −0.084*** (0.003) −0.081*** (0.003) −0.080*** (0.003)

Building Ageb −0.113*** (0.004) −0.096*** (0.004) −0.113*** (0.004)

Building Age2 0.004*** (0.001) 0.004** (0.001) 0.004*** (0.001)
Bathrooms 0.007 (0.004) 0.006 (0.004) 0.010 (0.005)
Garage Square Feeta 0.375*** (0.017) 0.318*** (0.017) 0.335*** (0.018)
Sales Quarter 2 0.030*** (0.006) 0.031*** (0.006) 0.030*** (0.006)
Sales Quarter 3 0.027*** (0.006) 0.027*** (0.006) 0.026*** (0.006)
Sales Quarter 4 0.036*** (0.006) 0.036*** (0.006) 0.035*** (0.006)
Rho (ρ) 0.206*** (0.012)
Lambda (λ) 0.586*** (0.035)
Tornado Event Year 0-2

-9 0.016 (0.015) 0.021 (0.014) 0.015 (0.015)
-8 0.014 (0.014) 0.019 (0.014) 0.013 (0.014)
-7 −0.005 (0.013) 0.003 (0.013) −0.004 (0.013)
-6 −0.025* (0.014) −0.021 (0.014) −0.027* (0.014)
-5 −0.013 (0.014) −0.001 (0.014) −0.017 (0.014)
-4 0.018 (0.013) 0.02 (0.013) 0.017 (0.013)
-3 0.032** (0.014) 0.032** (0.014) 0.030** (0.014)
-2 0.011 (0.013) 0.015 (0.013) 0.010 (0.013)
-1 0.013 (0.012) 0.018 (0.012) 0.012 (0.012)
0 −0.053*** (0.012) −0.044*** (0.012) −0.051*** (0.012)
1 −0.016 (0.012) −0.007 (0.012) −0.016 (0.012)
2 −0.015 (0.011) −0.008 (0.011) −0.015 (0.011)
3 0.005 (0.010) 0.009 (0.010) 0.005 (0.010)
4 −0.001 (0.011) 0.006 (0.010) −0.001 (0.011)
5 −0.001 (0.009) 0.010 (0.009) −0.001 (0.009)
6 0.006 (0.009) 0.017* (0.009) 0.006 (0.009)
7 −0.010 (0.010) −0.001 (0.010) −0.009 (0.010)

Year Fixed Effects Yes Yes Yes
Moran’s I Residuals 0.020***
Log Likelihood 443.475 408.925
AIC -531.580 -748.93 -699.85
N 15.066 15,066 15,066

R2 0.781
LM Lagc 243.750***
Robust Lagc 74.130***
LM Error 171.290***
Robust Error 146.590***

Notes: The 1%, 5%, and 10% levels of significance are given as ***, **, and *, respec-
tively.

aHouse and garage square footage measured in 1,000 square feet.
bAge measured in 10 year increments.
c Lagrange multiplier (LM) and robust LM test statistics are reported for the reduced-
sample OLS model.
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