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1. INTRODUCTION

Social vulnerability has long been considered a key factor that affects how diverse commu-
nities respond to disruptive events like natural disasters and disease outbreaks. Social vul-
nerability commonly refers to the inability of certain sociodemographic groups to withstand
or adapt to an external shock’s adverse impacts (Bakkensen et al., 2017). The voluminous
literature on social vulnerability and its related concept of community resilience has spawned
a proliferation of composite, quantitative indicators for individual communities as summary
measures of the high-dimensional nature of inherent sociodemographic attributes (Fatemi
et al., 2017). Yet it remains unclear whether those social vulnerability models align with
post-disaster outcomes (Bakkensen et al., 2017; Rufat et al., 2019; Spielman et al., 2020).
This paper aims to fill this knowledge gap.
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Our study focuses on the Social Vulnerability Index (SVI) constructed by the Centers
for Disease Control and Prevention (CDC) and the Agency for Toxic Substances and Dis-
ease Registry (ATSDR). Most social vulnerability or resilience indices are geared toward a
wide range of disasters, such as tropical storms and wildfires. The CDC/ATSDR instead
constructed its SVI and the constituent indicators with a focus on providing “socially and
spatially relevant information to help public health officials and local planners better pre-
pare communities to respond to emergency events such as ... disease outbreaks.” (ATSDR,
2022).

The COVID-19 pandemic provided a natural testing ground for exploring the empir-
ical validity of social vulnerability constructs. Disease outbreaks were widespread across
the United States. In early 2020, socially vulnerable communities, particularly those with
disproportionately large ethnic-minority populations, experienced high COVID-19 incidence
and death rates (Neelon et al., 2022). Over the next two years, the nation continued to
undergo several waves of outbreaks while its overall economy steadily returned to its pre-
pandemic conditions. Like the historic economic recession during the early months of the
pandemic, the pace of subsequent recovery varied widely across local communities and broad
regions. Case studies have found that natural disasters disproportionately impacted socially
vulnerable populations (Bakkensen et al., 2017; Park and Xu, 2020). In the context of the
COVID-19 pandemic, the question we seek to address is: How well do pre-existing social vul-
nerability characteristics, as captured by the CDC SVI, explain disparities in local economic
and public health outcomes?

To evaluate the empirical validity of social vulnerability measures, the typical approach is
to perform regression analysis that estimates the extent to which social vulnerability predicts
disaster outcomes (e.g., Bakkensen et al., 2017; Rufat et al., 2019). However, standard re-
gression methods, such as ordinary least-squares (OLS), suffer two shortcomings that are ad-
dressed in this study. First, regression results ignore spatial effects over different geographic
locations. Spatial analysis in the context of spatial dependence and spatial heterogeneity is
common in modeling social vulnerability characteristics (e.g., Cutter et al., 2014; Cutter and
Derakhsan, 2020). Drawing from the first law of geography, spatial dependence, or autocor-
relation, occurs when the observations of nearby locations tend to be similar. Interactions
between the labor market and the economy of a community and those of its neighbors tend
to intensify in the wake of a disaster (Lee, 2021). For instance, Belasen and Polachek (2009)
described how counties in the state of Florida hit directly by hurricanes affected the labor
supply and wages in their surrounding counties. As people commuted to work during the
pandemic, neighboring areas tended to share the impacts of COVID-19 outbreaks.

Another aspect of spatial nonstationarity is unobserved spatial heterogeneity, which de-
scribes the uneven distribution of model relationships over different geographic locations.
Spatial heterogeneity is particularly relevant to social vulnerability conditions, which ex-
hibit remarkable disparities across U.S. regions (Cutter et al., 2014, 2016; Park and Xu,
2020). Local regulations and public services, such as school closures and online class deliv-
ery, also vary among U.S. communities. Omitting the presence of spatial effects would lead
to biased and inconsistent model estimates and spurious inferences (LeSage and Pace, 2009).

The second shortcoming of OLS arises from a lack of flexibility in estimating model
relationships beyond the mean of the dependent or outcome variable. The literature has
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documented the nonlinear nature of disaster damage in the sense that physical and eco-
nomic losses tend to be disproportionately larger at the top end of the disaster intensity
than its lower end (Schumacher and Strobl, 2011). This may also bring about outliers in
disaster outcomes that potentially distort OLS estimation results. As shown in this study,
the association between sociodemographic attributes and disaster outcomes might differ be-
tween communities severely impacted by the pandemic and those less exposed to COVID-19
outbreaks, such as rural regions in the U.S. Midwest. As such, the OLS estimator that
is restricted to the conditional mean is not informative about model relationships at other
points of the conditional distribution of the dependent variable. This might explain the
mixed findings in studies (e.g., Bakkensen et al., 2017; Rufat et al., 2019; Lee, 2023) that
empirically evaluate social vulnerability indices, including the CDC SVI, in the context of
historical disasters.

We overcome the above two drawbacks by incorporating spatial dependence and spatial
heterogeneity simultaneously with the consideration of varying model relationships across the
entire conditional distribution of the outcome variable. The approach essentially extends the
spatial autoregressive geographically weighted regression (SAR-GWR) model (Geniaux and
Martinetti, 2018) to a conditional quantile regression (QR) setting. A spatial autoregression
model incorporates spatial interactions in the dependent variable, whereas geographically
weighted regression relaxes the assumption of “global” or constant model relationships for the
entire study area and estimates those relationships “locally” at different geographic locations.
The spatial autoregressive geographically weighted quantile regression (SAR-GWQR) helps
us explore the uneven geography of the COVID-19 pandemic impacts across the United
States by allowing model parameters to vary over the conditional distribution of disaster
outcomes in addition to over geographic space (Tomal and Helbich, 2023).

2. DATA AND METHODS

2.1. Data Description
2.1.1. Outcome Variables

This study evaluates the role of social vulnerability in explaining disparities in local economic
and public health outcomes across the United States during the COVID-19 pandemic. Mo-
tivated by the finding of the pandemic’s evolving impact on communities of different social
vulnerability characteristics (Neelon et al., 2021), we consider outcomes in two periods. The
first period is April 2020, at the depths of a nationwide recession induced largely by stay-
at-home orders and business lockdowns during the first wave of COVID-19 outbreaks. The
second period is June 2022, when outbreaks subsided across the U.S., and the overall national
economy returned to its pre-pandemic level.

We employ county-level data to compare local communities. Following Rose (2021) and
Walmsley et al. (2021), we characterize local economic losses and subsequent recovery alter-
natively by employment and output. The employment levels of the nation’s 3,142 counties
and county equivalents capture local labor market conditions. The data are sourced from the
Bureau of Labor Statistics’ Local Area Unemployment Statistics (LAUS) program. Seasonal
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factors are removed using the U.S. Bureau of Census X-11 procedure.

The total size of economic activity, or output, is another metric indicative of how well
or poorly an economy performs, but such a measure is not typically available at the county
level. As a proxy, we leverage the County Economic Impact Index (CEII) developed by
the Department of Energy’s Argonne National Laboratory (Smith et al., 2021). The CEII
is equivalent to the relative measure of the total value added of all industries, or Gross
Domestic Product, within a county. The monthly CEII data are seasonally adjusted at the
source.

Data for the two economic outcomes are expressed as percentage deviations from the
January 2020 levels as the pre-pandemic baselines. For instance, a positive value for em-
ployment indicates the percentage of a given month’s employment level that was below the
January 2020 baseline, and a negative value indicates the percentage that was above the
baseline. Essentially, the employment and output data in April 2020 and June 2022 depict
COVID-19’s adverse impact on local economies, respectively, at the early and late stages of
the pandemic. In April 2020, employment losses across U.S. counties averaged about 11%
with a range between 7% and 41%. By June 2022, a typical county had restored most of
the employment lost during the early months of the pandemic (i.e., 0% median), but the
employment levels of 1,372 counties (44%) remained below their pre-pandemic levels. The
overall geographic distribution of the CEII data across the nation is comparable to that of
the employment data.

For public health outcomes, we consider the number of confirmed coronavirus cases and
deaths per 1,000 persons in each county. The number of confirmed cases tracks the spread
of the virus within a county, whereas the number of reported COVID-19 deaths represents
the ultimate impact on public health, especially in populations at higher health risk. The
data are monthly cumulative COVID-19 incidence and death data obtained from the New
York Times database. The cumulative public health data for April 2020 and June 2022
allow us to compare how individual counties were susceptible to the public health impacts
of COVID-19 outbreaks at the onset of the pandemic with their susceptibility over nearly
the entire pandemic.

To facilitate comparisons of data in different scales, all dependent and explanatory vari-
ables in model regressions are standardized into z-scores. Table 1 displays their descriptive
statistics. All variables have a zero mean and a standard deviation equal to one due to
standardization. However, specifically for the dependent variables, the 0.25 (7 = 0.25) and
0.75 (7 = 0.75) quantiles, along with the minimum and maximum values, reveal remarkable
variability around the median. Cross-sectional variation, as captured by the ranges between
the 0.25 and 0.75 quantiles and between extreme values, reduces for the employment variable
from April 2020 to June 2022. The output variable also becomes less dispersed during the
latter period, but its maximum value is much higher, reflecting exceptionally strong eco-
nomic recovery among a few counties. By contrast, the two quantiles of the COVID case
and death variables remain in relatively narrow ranges by the end of the pandemic.

The county-level outcome data are further presented as choropleth maps in Figure Al
of the Appendix. In April 2020, local employment and output were more exposed to the
COVID-19 pandemic in the Great Lakes and Northeastern region, the state of Florida, and
on the West Coast (blue color). Economic losses were relatively modest among counties
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Table 1: Descriptive Statistics for Regression Variables
Mean Std.Dev. Min. 7=0.25 Median 7=0.75 Max.

SVI 0.000 1.000 -2.819  -0.724 0.019 0.723 2.607
Pop. Density 0.000 1.000 -3.958  -0.556 0.005 0.551 4.133

April 2020 Regressions

Employment 0.000 1.000 -3.082  -0.677 -0.010 0.592 5.261
Output 0.000 1.000 -4.258  -0.596 -0.011 0.593 8.975
COVID Cases 0.000 1.000 -5.488  -0.261 0.072 0.589 2.502
COVID Deaths 0.000 1.000 -2.94 -0.873 -0.148 0.877 2.464
Policy Stringency  0.000 1.000 -1.770  -0.580 -0.207 0.238 2.951

Policy Support 0.000 1.000 -1.882  -0.630 -0.213 0.738 2.639

June 2022 Regressions

Employment 0.000 1.000 -26.502  -0.438 0.045 0.473 3.895
Output 0.000 1.000 -3.575  -0.574 0.053 0.577  18.093
COVID Cases 0.000 1.000 -2.854  -0.101 0.176 0.824 2.760

COVID Deaths 0.000 1.000 -1.602  -0.237 0.165 0.952 2.601
Policy Stringency  0.000 1.000 -2.449  -0.648 0.019 0.505 3.825
Policy Support 0.000 1.000 -2.159  -0.641 -0.055 0.277 2.530

Notes: The sample consists of observations for 3,142 U.S. counties and county equivalents.
The original employment and output data are expressed relative to the January 2020 levels.
The SVI data are obtained from the CDC/ATSDR, 2020 database. The original data of pop-
ulation density is the log level of residents per square mile of county area. The original data
for COVID cases and deaths are log levels of cumulative numbers per 1,000 persons through
the specific regression month. The original data for policy stringency and policy support are
individual states’” OxCGRT policy indices that are averaged over the period between Jan-
uary 2020 and the specific regression month. The data of all variables are standardized into
Z-Scores.

in the Great Plains (e.g., Montana, Wyoming, Colorado, North Dakota, South Dakota,
Nebraska, and Kansas) and Midwestern regions (red color). For economic outcomes in June
2022, the data appear more scattered than those in the earlier period, especially in the Great
Plains region. In addition, most counties in the state of Florida performed relatively better
in mid-2022 than they did about two years earlier.

The geographic distributions of the four sets of public health data across broad U.S.
regions appear to align with the economic data in some regions but not others. The COVID-
19 case rates and death rates tended to be higher along much of the East Coast and parts
of the Southwestern region. Except for a few regions, such as the New England area in
the Northeast, the cumulative death rates differed remarkably between the two periods. For
instance, the death rates in parts of the Midwest were relatively higher over the entire course
of the pandemic than during the first wave of COVID-19 outbreaks.
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2.1.2.  FEzxplanatory Variables

Given the COVID-19 pandemic as our event study, the measure of social vulnerability draws
from the CDC county-level database released in 2020. The CDC SVI is a composite mea-
sure of the summed percentile rankings of 15 variables based on Census data (Flanagan et
al., 2011). The constituent components represent a broad range of sociodemographic fac-
tors, which are grouped into four themes: a) socioeconomic status (population living below
poverty; unemployed workers; per capita income; population without a high school diploma),
b) household composition and disability (population aged 65 and older; population aged 17
and younger; population living with a disability; single-parent households), ¢) race/ethnicity
and language proficiency (racial/ethnic minority population; people with limited English
proficiency), and d) housing type and mobility (multi-unit housing; mobile homes; crowed
housing; households without a vehicle; population living in group quarters).

The role of sociodemographic conditions in determining a community’s vulnerability to
disasters is well documented (e.g., Cutter et al., 2014). Some recent studies question the
empirical validity of their quantitative measures (e.g., Rufat et al., 2019). In the context
of the COVID-19 pandemic, the incidence of virus caseload and excess mortality was found
to be associated with the presence of certain demographic groups, such as elderly people
(Rodriguez-Pose and Burlina, 2021; Ramirez et al., 2022). To supplement the descriptive
statistics in Table 1, Figure A2 in the Appendix shows that socially vulnerable counties are
more concentrated in the South and Southwest, especially rural areas in those regions (blue
color). They are less likely to be found in the Northeast and Midwest.

Other than the CDC SVI as the primary predictor variable of interest, our regression
analyses account for confounding factors that might have also affected local economic and
public health outcomes over the course of the pandemic.! The first control variable is pop-
ulation density (the number of residents per square mile of county area). During the early
months of the pandemic, COVID-19 outbreaks tended to intensify in more populous city
centers than in suburbs or rural areas (Carozzi et al., 2024; Ramirez et al., 2022). Figure
A2 in the Appendix indicates relatively lower population density in the western half of the
United States, except the West Coast.

The empirical model also accounts for government policy measures and interventions in
response to COVID-19 outbreaks and their impact on the local economy. The diversity of
government responses makes it difficult to measure policy outcomes. We, nevertheless, draw
on the monthly data of two composite policy measures of Oxford COVID-19 Government
Response Tracker (OxCGRT) for U.S. individual states (Hallas et al., 2021). State govern-
ments’ responses to COVID-19 were likely to be exogenous to county-level conditions. The
first is the policy stringency index, which measures the strictness of closure and COVID-
19 containment measures, such as stay-at-home orders, lockdown restrictions, and closures
for schools and workplaces. A higher value represents stricter policy measures. Famigli-
etti and Leibovici (2021) showed that states with higher policy stringency scores during the
early months of the pandemic experienced relatively higher unemployment. Dergiades et al.

'We have also considered other controlling factors, such as remote work (Althoff et al., 2022) and economic
diversification (Coulson et al., 2020). These variables are not statistically significant in preliminary analysis
and so are excluded from final regression results.
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(2022) reported the effectiveness of government interventions for reducing coronavirus-related
deaths.

The second policy measure captures the extent of economic support, such as financial
aid to people who lost their jobs and debt relief for households. Government financial aid
could arguably alleviate the devastation of the pandemic on communities and their economies
(Edelberg and Sheiner, 2021). A higher index value represents more economic support. The
OxCGRT policy data series begins in January 2020. To account for lagged policy effects, we
take the monthly average of the indices between January and April 2020 in the model for
outcomes in April 2020. Similarly, for analyzing outcomes in June 2022, we take the average
of the 30 months between January 2020 and June 2022.

Figure A2 in the Appendix displays the state policy data of the two periods. State pol-
icy measures that aimed to contain COVID-19 outbreaks were the strictest throughout the
pandemic in the state of California on the West Coast, the Great Lakes, and the North-
eastern regions (blue color). Containment measures were especially lax among states in the
Southeast, such as Florida and Alabama, and the Great Plains, such as North Dakota, South
Dakota, and Kansas (red color). By comparison, the relative extent of economic support
across states was less consistent over time than policy stringency. Only the states along the
West Coast (i.e., California, Oregon, and Washington) and in the lower portion of the North-
east (e.g., New York, New Jersey, and Pennsylvania) continued to provide the most financial
relief to households within their states. Changes in state-level policy measures during the
pandemic affect the distributions of the two policy variables, as shown in Table 1.

2.2. Empirical Models

This section outlines the workhorse of our empirical study of the extent to which the CDC’s
social vulnerability index explains disaster outcomes in the COVID-19 pandemic. A standard
regression model for a cross-section of n geographic locations, or counties in our case, can
be written as:

k

where y; is the dependent variable, (3 is a vector of parameters, x;, denotes an explanatory
. . . . T .

or predictor variable in the covariate set X;=(1, x;1, Zi2,..., ¥ip) , and ¢; is an error term

that is assumed to be normally distributed in OLS regression. If spatial dependence exists

among data observations with a spatial dimension, then the OLS assumption about the error

term is violated. A spatial autoregressive (SAR) model that accounts for the presence of

spatial autocorrelation, a form of spatial dependence, can be expressed as:

Yi=p Z wijY; + Z Brin + & (2)
j f

where p is the spatial autoregressive parameter, and w;; is an element of a spatial weight
matrix W, which quantifies interactions between nearby locations with the first-order queen
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contiguity-based spatial weights. The matrix W is row-standardized so that Zj w;; = 1.
The key feature of SAR is the spatially lagged dependent variable, Wy, which is a weighted
average of all neighbors of location 1.

LeSage and Pace (2009) indicated that the SAR can conceptually provide coefficient
estimates for covariates in the model at every location as (I, — pW)_lﬁk, which is a full
nxn matrix. However, to simplify interpretations, it is customary in the SAR literature
to apply a scalar specification, which assumes that, like OLS, model parameters are the
same for all geographic locations. The “total” effect of z;;, on y;, which includes the effects
from neighboring observations, becomes /(1 — p). To relax this assumption, geographically
weighted regression (GWR) accounts for unobserved spatial heterogeneity by allowing model
parameters to vary across data observations of different locations. The spatially lagged
dependent variable can supplement standard GWR to yield an encompassing spatial model
SAR-GWR, which accounts for both spatial dependence and spatial heterogeneity (Geniaux
and Martinetti, 2018):

yi = p(ug, v;) Z Wiy + Z Bre (ui, Vi) Tap, + € (3)
j k

where (u;, v;) denotes the geographic coordinates of location 4, and so the parameters p (u;, v;)
and Sy (u;, v;) reflect values at location i. Compared with its counterpart p in equation (2),
p (u;,v;) is a “local” measure of spatial autocorrelation.

In line with the first law of geography, the spatial weight matrix > ;wi; = W assumes
that data observations closer to location ¢ receive a higher weight than observations located
farther from that location (Fotheringham et al., 2002). In this study, the specific weighting
scheme follows the “adaptive” bandwidth approach, in which the distance for capturing the
same number of neighboring locations varies across different locations. This is more attune
to our study region in which the density of observations associated with individual counties
varies across the United States. For location i, the weight of data observations of location j
is given by an adaptive Gaussian distance decay-based weighting function:

2,
e ) (@)

where d7; = [(u; — ;) + (v; — v;)°] is the Euclidean distance between location 7 and location
J, and h; is the spatial bandwidth (or neighborhood size) for location i. The optimal spatial
bandwidth is identified using cross-validation (CV), which minimizes the sum of squared
error (Fotheringham et al., 2002):

CV(R) =3l — 77 (X uvi)] (5)

%

where h is a given bandwidth and 7% is the predicted value from model regression condi-
tional on h without the ¢th location.

As for OLS, all the above spatial models (SAR, GWR, and SAR-GWR) are limited to
the characterization of conditional-mean relationships between the dependent variable and
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covariates. These conditional-mean regression models may not be informative over the entire
distribution of the dependent variable. This is particularly crucial for understanding the
impacts of social vulnerability across U.S. communities with potential outliers at both tails
of the distribution. Instead, conditional quantile regression allows for modeling spatially
varying relationships at different points of the conditional distribution of the dependent
variable (Koenker and Bassett, 1978). This framework contrasts unconditional quantile
regression, which estimates the impact on the dependent variable at a specific quantile for
all observations in a sample unconditional on the explanatory variable. The SAR-GWQR
model that extends SAR-GWR to a QR setting can be expressed as follows:

yi = 0 (wiy0) Y wiys + ) BY (us,v) w + €] (6)
7 k

where p” and ] are parameters at quantile 7 (0 < 7 < 1). Following Chen et al. (2012),
equation (6) can be estimated by solving a linear programming problem that minimizes the
following weighted loss function for a given location (ug,vg):

Z Yrlyi — p7 (ug, vo) Z Wi;Y; — Z B (uo, vo) i KK (%) ")

where v, (z) = z[T — I(z < 0)] is a V-shaped piecewise linear “check” function at quantile 7
and I(+) is the indicator function. The term K = diag(a1,...,q;y,) is a vector of weights,
«;j, depending on a pre-specified kernel function with the bandwidth ~ and the distance
d;o between the location (ug,v9) and the ith location (u;,v;). The bandwidth essentially
controls the smoothness and efficiency of parameter estimates. We adopt the Gaussian kernel
function analogous to equation (4) and an adaptive weighting scheme for the bandwidth.
Instead of the CV score defined by equation (5) for conditional-mean regression, the CV
value for determining the optimal bandwidth in QR is as follows:

= 2 0ol = 7 (o) (®)

where g/jfé) is the predicted value from SAR-GWQR with the ith location being removed.
The optimal bandwidth is determined by the model specification that yields the lowest CV
value.

For SAR-GWQR model estimation, we arrange the data of dependent variables into
quantiles and then apply a two-stage least-squares (2SLS) procedure suggested by Tomal and
Helbich (2023). First, we run conditional QR for the spatial lag term, Wy, as a dependent
variable using the variables X and WX as instruments (Anselin, 2003). This step is taken
to avoid an endogeneity bias from estimating Wy that is correlated with the error term.
Next, the fitted values from the first step are used to estimate the SAR-GWR with the

2An alternative is a local linear estimator (Chen et al., 2012; Wang et al., 2018), which is computationally
more demanding. The performance of the two methods is comparable (Yu and Jones, 1997), and so we
chose the local constant estimator in this study.
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local-constant QR method detailed by Chen et al. (2020). Essentially, the SAR-GWQR
method yields “local” quantile parameter estimates of the spatial lag and other covariates
at each geographic location across the conditional distribution of the dependent variable.

3. EMPIRICAL RESULTS

3.1. OLS Results

This section presents results from model regressions with the CDC SVI as the primary vari-
able for explaining local economic and public health outcomes in the COVID-19 pandemic.
As described in Section 2 above, the empirical models include population density, state-level
OxCGRT COVID-19-related policy stringency, and economic support measures in addition
to SVI. The dependent variable is measured alternatively by the relative employment and
economic activity levels as economic outcomes, as well as the COVID-19 case and death
rates. To facilitate interpretations among variables of different scales, especially the indices,
the data of all variables are converted to standard normal values. Regressions are run with
cross-section data of 3,142 U.S. counties separately in April 2020 and June 2022, which cor-
respond to the early and late stages of the pandemic, respectively. The expected sign for SVI
is positive, meaning more adverse impact on economic and public health outcomes among
more socially vulnerable counties.

Table 2 (panel A) first presents the results of OLS regressions as the baselines. Because
the four outcome variables have a standard normal distribution, the estimates for all intercept
terms are close to zero and, thus, are not reported. For the outcomes in April 2020, the
SVI parameter estimates are not statistically meaningful in the models for employment and
output, but statistically significant with the expected positive sign for the COVID-19 case
and death rates. For the outcomes in June 2022, the SVI parameter estimate is positive for all
outcome variables except the statistically insignificant estimate for employment. The positive
estimates confirm that more socially vulnerable counties experienced more pandemic-related
economic or public health impacts.

Overall, estimation results for the control variables are relatively more consistent across
the outcome variables than those for SVI. For instance, the results for population density
confirm that more populated counties were more exposed to both economic and public health
impacts at the onset of the pandemic. The negative parameter estimates for the June 2022
data indicate that cities or urban areas had recovered faster than rural areas by the end of
the pandemic. As a result, the economies of more populated counties performed relatively
better and had lower cumulative human tolls.

For the two pandemic-related state policy variables, most estimates are also statistically
significant. Higher policy stringency, or tighter containment measures, are associated with
more severe economic setbacks in the wake of the nationwide lockdowns in 2020. The es-
timation results also support the efficacy of state pandemic interventions for curbing local
COVID-19 outbreaks and death tolls. The results for the economic support variable (“sup-
port”) are mixed, however. In April 2020, state support was negatively associated with
economic outcomes and positively associated with the two public health outcomes. Their
corresponding parameter estimates switch signs for outcomes about two years later: State
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Table 2: “Global” Model Regression Results

A) OLS Models

April 2020 June 2022
Employment  s.c. Output se. Cases se. Deaths se. Employment  s.c. Output see. Cases se. Deaths se.
SVI 0.005 0.016 -0.003 0.017 0.126 0.016*** 0.071 0.017%%* 0.001 0.019 0.087 0.019%** 0.030 0.018* 0.217 0.018%%*
Density 0.412 0.016* 0.357 0.017%%% 0440 0.016%%* 0.282 0.017#%% -0.039 0.018%*  -0.055 0.018%** -0.020 0.018 -0.058 0.017%%*
Stringency 0.206 0.017%** 0.187 0.018%** -0.101 0.017%%% -0.067 0.018%** 0.010 0.020 0.002 0.020 -0.084 0.020%%* -0.190 0.019%**
Support -0.023 0.017 -0.048 0.018%%* 0.042 0.017%%*  0.068 0.019%%* 0.129 0.020%%* 0.072 0.020%**  -0.075 0.020%%*  -0.088 0.019%%*
Adjusted R? 0.224 0.165 0.224 0.094 0.017 0.123 0.018 0.106
Likelihood -4056.12 -4171.37 -4057.14 -4300.42 -4429.56 -4439.54 -4426.06 -4279.43
Moran’s I 0.558%#* 0.486%** 0.317#%* 0.249%+% 0.21%#* 0.198%#* 0.394%#* 0.373%%%
Robust LM 157.467++* 262.703%+* 32.104%%* 19.801#+* 412.168%** 348.109%+* 1.944%%% 0.723%%*
KB Test 26.650%%* 49.112%%% 295.046%** 169.553%%* 38.475%%* 47.835%+% 423.49%** 438.892%**
QR Pseudo R?  0.390 0.350 0.401 0.187 0.269 0.266 0.073 0.333
B) SAR Models
April 2020 June 2022
Employment  s.c. Output se. Cases se. Deaths see. Employment  s.c. Output se. Cases se. Deaths se.
SVI -0.021 0.016 -0.007 0.012 0.095 0.014%%* 0.043 0.016%* 0.025 0.018 0.078 0.018%** 0.040 0.015%** 0.143 0.015%%*
Density 0.136 0.012% 0.102 0.013%**  (0.258 0.016***  0.177 0.017* -0.028 0.017* -0.051 0.017%%*  0.017 0.014 -0.024 0.014
Stringency 0.036 0.011%** 0.033 0.013%%* -0.054 0.015%** -0.037 0.017%#% 0.009 0.019 0.001 0.019 -0.06 0.016%** -0.112 0.016%#*
Support -0.012 0.011 -0.016 0.013 0.015 0.015 0.032 0.017 0.081 0.019%**  0.05 0.019%** -0.015 0.016 -0.013 0.016
Spatial Lag 0.775 0.013%**  0.741 0.015%%*  0.541 0.020%%* 0.479 0.022%+% 0.435 0.024***  0.410 0.024%** 0704 0.017%%% 0634 0.018%**
Adjusted R? 0.657 0.571 0.409 0.246 0.143 0.127 0.379 0.384
Likelihood -3003.50 -3329.16 -3724.06 -4084.61 -4273.41 -4305.32 -3883.82 -3832.87
QR Pseudo R?  0.705 0.658 0.666 0.809 0.351 0.298 0.671 0.550

Notes: s.e. denotes standard error. *, ** and *** represent statistical significance at the 10%, 5%, and
1% levels, respectively.

support was positively associated with economic outcomes and negatively associated with
public health outcomes.

Below the OLS parameter estimates are the models’ overall diagnostic statistics. The
Moran’s I statistics test for spatial autocorrelation in residuals. Along with the corresponding
Lagrange Multiplier (LM) statistics, all Moran’s I test statistics reject the null hypothesis of
no spatial correlation in OLS residuals. Such statistical evidence supports our application of
the SAR model below. The KB test results, below the Moran’s I statistics, are Koenker and
Bassett (KB, 1978) statistics for detecting heteroskedasticity in regression residuals. All test
results are statistically significant, suggesting that our disaster outcome data do not follow
a normal distribution and plausibly contain extreme values.

3.2. QR Results

Unlike OLS, quantile regression is robust to outliers. For illustration, we ran standard,
“oglobal” conditional quantile regressions with the procedure developed by Koenker and Bas-
sett (1978). The bottom row of panel A in Table 2 shows the pseudo-adjusted R?’s, which
are appreciably higher than their OLS counterparts. Figure 1 shows the QR parameter
estimates for SVI at each decile (10th percentile) between the 0.1 and 0.9 quantiles of the
dependent variables. The shaded bands delineate the 95% confidence levels of the point
estimates. Keep in mind that all parameter estimates are expected to be positive to capture
the role of social vulnerability. In each case, the OLS parameter estimate (horizontal dashed
line) lies near the mean of the parameter estimates across the entire quantile range.

For employment in April 2020, the QR parameter estimate hovers around 0.05 up to the
median (7 = 0.5) and then becomes negative above the 0.75 quantile of employment losses.
The QR for output data of the same period yields a similar downtrend, turning negative
at the upper half of the output distribution. The patterns of the QR estimates for both
employment and output data contrast their corresponding OLS estimates, which are close

(©Southern Regional Science Association 2024.



38 The Review of Regional Studies 54(1)

Figure 1: OLS and Quantile Regression Estimates for SVI by
Outcome Quantile
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Notes: Horizontal dashed lines indicate OLS parameter estimates, and shaded bands indicate 95%
confidence intervals of quantile regression.

to the means of the conditional quantile estimates but not statistically different from zero
(see Table 2).

For the two economic outcomes in June 2022, however, the SVI parameter estimates
trend up instead of down along the outcome distributions. During that period, most of the
employment and output data above their medians are positive (i.e., employment and output
losses) as opposed to negative below the medians (i.e., higher employment and output levels
than the baselines). As such, the plots reveal that near the end of the pandemic, the expected
positive relationship between social vulnerability and pandemic-related economic tolls holds
up mostly among counties whose economies remained behind their pre-pandemic levels.
Those counties are mostly in states in the Eastern region. In the West, most counties in the
state of Nevada also lagged the rest of the nation due to the pandemic’s disproportionate
impact on tourism.

Unlike the results for economic outcomes, conditional quantile parameter estimates vary
modestly across the conditional distribution of COVID-19 case rates. Their corresponding
OLS parameter estimates are also mostly encapsulated by the 95% confidence bands of the
QR parameter estimates. This is not the case for local death tolls, however. The bottom two
plots of Figure 1 indicate that the relationship between social vulnerability and the death
rate was stronger among counties with higher death rates in April 2020, but this relationship
reversed in June 2022.

3.3. SAR Model Results

Like OLS, standard “global” quantile regressions ignore spatial effects. To illustrate the
impacts of spatial interactions on economic and public health outcomes, panel B of Table
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2 displays the results of “global” SAR model regressions. The SAR model supplements
the OLS model with a spatially lagged dependent variable, Wy, in equation (2) above. In
line with the test statistics for spatial dependence in panel A, the parameter estimates for
the spatial lags between 0.410 and 0.775 suggest strong, positive spillovers of economic and
public health outcomes of a county with its neighboring counties. The presence of the spatial
lag term does not alter the qualitative results of most covariates including SVI.

The SAR estimation results, nonetheless, are limited to the conditional means of the
dependent variable. To highlight this deficiency, the bottom row of Table 2 lists the pseudo-
adjusted R?’s of the SAR models estimated with QR. For all eight cases, QR further improves
the conventional SAR specification’s overall explanatory power, although the extent of im-
provement varies across different outcome data.

3.4. SAR-GWR Results

All results presented in Table 2 are generated from “global” models, which assume the
same parameter estimates for all U.S. counties. To explore varying model relationships
across counties in the context of spatial heterogeneity, we extend those “global” models to
geographically weighted regression. Table 2 displays estimation results for the SAR-GWR in
the form of equation (3) above. In addition to the models’” overall diagnostic statistics, the
table lists summary statistics for the “local” estimated parameters of the primary explanatory

variable, SVI.

Table 3 first lists the optimal bandwidths selected for model calibrations. For the April
2020 outcome data, the bandwidths between 243 and 568 correspond to broad U.S. regions.
The bandwidths for outcomes in June 2022 are considerably smaller, reflecting less spatial
interaction in the economic and public health outcomes over the course of the pandemic
than in early 2020. The next column lists the adjusted R?’s of the SAR-GWR models, which
are all higher than their SAR counterparts in Table 2. The better performance of SAR-
GWR over SAR is further supported by the statistically significant likelihood ratio (LR)
test statistics for comparing the two models.?

Instead of parameter estimates that capture “direct” effects, Table 3 lists the “total”
effects of the parameter estimates, which also include “indirect” spatial effects of neighboring
counties, are larger by a factor of 1/(1-p) where p is the estimated spatial autoregressive
parameter. For each of the eight outcomes, the median of “local” parameter estimates
for SVI is comparable to their corresponding “global” parameter estimates. However, the
spreads between the minimum and maximum values, as well as their standard deviations,
indicate large dispersions in local parameter estimates. Chen et al. (2012) proposed a test
for spatial heterogeneity in a model parameter, which compares the interquartile range (IQR,
between 25th percentile and 75th percentile) of the local parameter estimates against twice
the standard error of the “global” model parameter estimate. In all cases, there is evidence
in support of spatial heterogeneity in the SVI parameters as the IQR exceeds twice the
standard error (s.e.) of the corresponding “global” SVI parameter estimate.

3The LR test statistics are two times the difference between the two models’ log-likelihood values with one
degree of freedom.
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Table 3: SAR-GWR Results

Adjusted Log LR SVI Local Parameter (Total Effects)
Bandwidth R2 Likelihood (SAR) Minimum Median Maximum Std. Dev. IQR 2xs.e.
(SAR)
A) April 2020
Employment 412 0.685 -2605.304  796.392%** -0.377 -0.036 0.094 0.056 0.112 > 0.048
Output 243 0.618 -2880.102  898.116%** -0.338 -0.029 0.25 0.091 0.182 > 0.047
COVID Cases 357 0.459 -3447.903  552.314%** -0.309 0.101 0.352 0.096 0.192 > 0.046
COVID Deaths 568 0.295 -3879.926  409.368*** -0.164 0.021 0.254 0.100 0.200 > 0.031
B) June 2022
Employment 58 0.440 -3271.042  2004.736*** -0.732 0.076 1.648 0.167 0.334 > 0.032
Output 89 0.372 -3726.607  1157.426%** -0.681 0.098 1.406 0.175 0.350 > 0.030
COVID Cases 276 0.462 -3407.371  952.898*** -0.244 0.132 0.896 0.035 0.070 > 0.050
COVID Deaths 217 0.685 -2605.304  2455.132%** -0.377 -0.036 0.094 0.125 0.250 > 0.042

Notes: IQR denotes the interquartile range. s.e. denotes standard error. *** denotes statistical signifi-
cance at the 1% level.

3.5. SAR-GWQR Results

Despite evidence of spatial heterogeneity in model relationships other than spatial autocor-
relation, it is important to observe that the adjusted R?’s of the SAR-GWR models (Table
3) are lower than their corresponding statistics for models that extend SAR to QR (bottom
row of Table 2. This caveat motivates the adoption of a framework that nests the SAR-GWR
model with QR, as captured by equation (6) above.

For illustration, Table 4 reports key results of the SAR-GWQR models at three condi-
tional quantiles of the dependent variable, namely the 0.25, 0.5 (median), and 0.75 quan-
tiles. Standard errors are obtained with a bootstrap method with 500 replications (Chen et
al., 2020). The optimal bandwidth for model calibration varies as much among the three
quantiles as different outcomes. The bandwidths tend to be smaller for employment and

COVID-19 death data than output and COVID-19 case data.

According to the pseudo-adjusted R?’s, the model goodness-of-fit differs considerably
across different quantile levels. Overall, the empirical model fits the economic and pub-
lic health data better at the middle quantile (7=0.5) than the upper (7=0.75) and lower
(7=0.25) quantiles. The R? values at the middle quantile are also most comparable with the
corresponding statistics for the SAR-GWR model in Table 3. Despite a dearth of decisive
improvement in the overall explanatory power, the primary advantage of the QR extension
stems from the estimation results for quantiles away from the median. This is illustrated by
the summary statistics of the local parameter estimates for SVI in Table 4. Overall, the me-
dian tends to increase with a higher quantile. The standard deviations are also comparable
across quantiles and between the two periods. However, the ranges between the maximum
and minimum values are substantially larger for the earlier than the later period, suggesting
the presence of more extreme outcomes in early 2020. At all quantiles, spatial heterogeneity
is confirmed by Chen et al.’s (2012) test, in which the IQR of the local parameter estimates
exceeds two standard errors of the corresponding “global” SAR model estimated with QR.

To visualize the results of QR in comparison with the conditional-mean models, we
constructed choropleth maps of “local” parameter estimates for SVI in the GWR, SAR-
GWR, and SAR-GWQR. Estimates from the latter two models with a spatial autoregressive
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Table 4: Results of SAR-GWR with Quantile Regression (SAR-GWQR)

Pseudo SVI Local Parameter (Total Effects)
Bandwidth Adj. R? Minimum Median Maximum Std. Dev. IQR 2 x s.e.
(SAR-QR)

A) r=0.25

April 2020

Employment 134 0.574 -1.764 -0.258 0.750 0.360 0.448 > 0.042
Output 1659 0.461 -1.566 -0.913 -0.017 0.364 0.540 > 0.226
COVID Cases 243 0.295 -1.495 0.781 3.369 0.835 1.139 > 0.087
COVID Deaths 82 0.275 -1.601 -0.031 1.115 0.264 0.252 > 0.033
June 2022

Employment 478 0.267 -0.692 0.161 0.789 0.346 0.563 > 0.052
Output 248 0.238 -0.566 0.228 1.351 0.351 0.435 > 0.045
COVID Cases 1643 0.384 -0.037 0.269 0.604 0.166 0.266 > 0.073
COVID Deaths 356 0.369 -0.011 0.464 1.426 0.209 0.273 > 0.028
B) 7 = 0.50

April 2020

Employment 258 0.681 -1.993 -0.263 1.013 0.527 0.785 > 0.073
Output 1093 0.594 -1.133 -0.009 0.685 0.430 0.623 > 0.145
COVID Cases 284 0.428 -0.181 0.241 0.804 0.180 0.257 > 0.029
COVID Deaths 121 0.285 -0.821 0.021 1.116 0.330 0.432 > 0.033
June 2022

Employment 392 0.349 -0.487 0.223 1.506 0.316 0.349 > 0.043
Output 265 0.325 -0.307 0.279 1.302 0.289 0.333 > 0.037
COVID Cases 1242 0.503 0.122 0.236 0.544 0.094 0.112 > 0.026
COVID Deaths 433 0.395 0.078 0.330 0.741 0.121 0.194 > 0.021
C) r=0.75

April 2020

Employment 377 0.603 -8.313 0.526 9.571 4.642 5.860 > 0.869
Output 1026 0.490 -1.519 0.732 3.273 1.218 2.119 > 0.419
COVID Cases 217 0.183 -0.382 0.201 0.795 0.183 0.240 > 0.021
COVID Deaths 437 0.237 -0.513 0.208 0.852 0.266 0.323 > 0.046
June 2022

Employment 294 0.226 -0.725 0.578 2.201 0.471 0.619 > 0.064
Output 308 0.277 -0.478 0.357 1.273 0.290 0.371 > 0.044
COVID Cases 176 0.190 -0.165 0.173 0.605 0.128 0.144 > 0.012
COVID Deaths 237 0.297 -0.109 0.245 0.856 0.156 0.218 > 0.018

Notes: IQR denotes the interquartile range. s.e. denotes standard error obtained through 500 bootstrap
replications.

term represent “total” effects, which include “indirect” spatial effects captured by the spatial
autoregressive term. Figure 2 displays the results for outcomes in April 2020 and Figure 3
displays the results for outcomes in June 2022. For comparison purposes, we present the
conditional quantile regression results for 7 = 0.5 (median), and only estimates that are
statistically significant at the 0.01 level are visible.*

The maps in Figure 2 convey two general observations. First, the spatial patterns of the
SAR-GWQR parameter estimates (third column) for the two economic outcomes in April
2020 appear to correspond to the relative sizes of pandemic-related economic losses. For
employment, positive SVI parameter estimates (blue color) are found largely in the South-

1A vast majority of local SVI parameter estimates are negative at the 0.25 quantile and positive at the 0.75
quantile. To conserve space, these results are not reported here but are available upon request.
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eastern U.S., such as the states of Florida and Texas. For output, positive SVI parameter
estimates are found along the Atlantic Coast. Those regions also tended to experience dispro-
portionately more economic losses in the wake of business lockdowns in early 2020 (Figure
A1 in the Appendix). Conversely, negative SVI parameter estimates (red color) coincide
with relatively lower economic losses in much of the Midwest and Western regions. The map
for the relationship between the SVI and the death rate (bottom right map in Figure 2) dis-
plays a similar overall pattern in association with the distribution of death rates across the
United States. For the June 2022 outcomes in Figure 3, negative SVI parameter estimates
for employment, output, and deaths also cluster in the Western United States, particularly
counties less exposed to the pandemic’s adverse impacts.

Figure 2: Geographically Weighted Regression Local Parameter
Estimates for SVI (April 2020 Outcomes)
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The second observation is that the SAR models, which augment GWR with a spatial
lag term, smooth out the “local” parameter estimates for SVI over geographic space as
the estimated impact on each county’s disaster outcomes includes spillover effects from its
neighboring counties. As evident in the first column of Figure 2, the standard GWR generates
rather scattered parameter estimates both in their signs and magnitudes across the United
States. Dispersion is much less evident among local parameter estimates from SAR-GWR
(second column). An extension of SAR-GWR to QR (third column) yields even smoother
local parameter estimates due in part to larger bandwidths (Table 4). The smoothing effects
of large bandwidths are striking for the output data in April 2020 (bandwidth of 1,093
counties) and the COVID-19 incidence data in June 2022 (bandwidth of 1,242 counties).

(©Southern Regional Science Association 2024.



LEE & HUANG: SOCIAL VULNERABILITY & PANDEMIC: SPATIAL QUANTILE REGRESSION 43

Figure 3: Geographically Weighted Regression Local Parameter
Estimates for SVI (June 2022 Outcomes)

GWR SAR-GWR SAR-GWQR (x=0.5)
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The overall pattern of local SVI parameter estimates of SAR-GWQR at the median of
the outcome distribution (7 = 0.5) is drastically different from the corresponding results
in conditional-mean regressions (GWR and SAR-GWR). In particular, parameter estimates
are negative for economic outcomes in both periods for most counties in the Western region.
For the mid-2022 period, positive parameter estimates for economic outcomes can be found
mostly in the Northeast.

Between the two public health outcomes, the spatial patterns of the results for the
COVID-19 death data, as opposed to incidence data, align with the results for economic
outcomes. The SVI parameter estimates for COVID-19 cases are predominantly positive.
Those comparative results highlight the extent to which socially vulnerable populations are
exposed to the disease’s most severe health impact. The bottom right map in Figure 3
shows that, at the median of the conditional distribution, the parameter estimates for the
relationship between SVI and the death rate are positive among most counties in the eastern
half of the United States and negative in the western half. This contrasts the results of the
conditional-mean regressions, which generate mostly positive local parameter estimates.
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4. DISCUSSION

Despite a proliferation of social vulnerability constructs to guide policymakers in efforts
to mitigate and respond to the adverse effects of disasters, some studies have questioned
the empirical validity of those composite measures, especially their reliability in predicting
different disaster outcomes (Bakkensen et al., 2017; Rufat et al., 2019). One reason for
the weak or conflicting findings stems from disparities in a variety of sociodemographic
conditions as well as disaster outcomes across local communities and broad U.S. regions
(Cutter et al., 2014, 2016). From this perspective, geospatial dynamics play a key role in
modeling community-level disaster outcomes with pre-disaster social vulnerability attributes
(e.g., Rufat et al., 2019; Park and Xu, 2020).

Our empirical model estimated with OLS generates mixed results for the CDC SVI as
the key predictor for local economic performance at two distinct stages of the COVID-19
pandemic. By comparison, the OLS results for predicting public health outcomes are more
decisive. In particular, more socially vulnerable counties are found to witness relatively more
coronavirus-related death tolls. This finding accords with results on the role of sociodemo-
graphic factors in determining excess mortality during the pandemic (Rodriguez-Pose and
Burlina, 2021; Ramirez et al., 2022).

We attribute the distinct results for estimating the role of social vulnerability in economic
outcomes as opposed to public health outcomes to the varying model relationships over the
distribution of economic outcomes, particularly outliers at the tails of the distributions. As
a result, the OLS estimator, which is limited to the conditional mean of the dependent
variable, conceals a great deal of variation in model relationships over the entire distribution
of economic outcomes. An application of QR reveals positive parameter estimates for SVI
up to the median of local employment and output losses during the onset of the pandemic
in April 2020. For counties most exposed to economic disruptions (i.e., top quartile), the
parameter estimates for SVI turn negative. This might explain the near-zero OLS parameter
estimates, which are close to the medians of the QR parameter estimates. In other words, as
a result of some counties that were hit exceptionally hard in early 2020, standard conditional-
mean regressions underestimate the role of social vulnerability for others.

For economic outcomes near the end of the pandemic in June 2022, the QR results for
SVI infer patterns opposite to those based on data about two years earlier. The finding of
an increasing trend along the outcome conditional distribution complements recent studies
on disaster determinants. For example, Kim and Marcouiller (2019) reported that the deter-
minants of flood losses become relevant only when the damage reaches a high level. Sociode-
mographic factors were less relevant to local economies, largely immune to the pandemic’s
devastation, especially the best-performing U.S. counties. Conditional quantile regressions
also yield different trends of parameter estimates in models for public health outcomes be-
tween the two periods. For COVID-19 death tolls up to April 2020, the SVI plays a larger
role among counties with higher death rates, but the opposite pattern occurs over the pan-
demic through June 2022. Neelon et al. (2021) found that more socially vulnerable counties
began to exhibit lower instead of higher COVID-19 death rates in late 2020, plausibly due
to government policy responses and interventions. Ramirez et al. (2022) showed that while
the coronavirus spread more widely over time, local death tolls continued to be affected by
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government responses along with sociodemographic and institutional factors.

Other than social vulnerability’s varying role at different levels of local disaster outcomes,
spatial dependence and unobserved spatial heterogeneity in its relationships with disaster
outcomes prevail across the United States. Spatial spillovers of disaster outcomes are well
documented in the literature (Belasen and Polacheck, 2009; Lee, 2021). Estimates of the
spatial lag term in the SAR models highlight more spatial interactions among counties at the
early stage than at the late stage of the pandemic. Local parameter estimates from incorpo-
rating GWR into the standard SAR model add insight into variation in model relationships
among counties in different regions. The overall findings accord with studies (Cutter et al.,
2014, 2016, 2020; Park and Xu, 2020) that highlight the extent of spatial variation in social
vulnerability across U.S. regions and its implication for understanding disaster outcomes.

Still, inferences from the integrated SAR-GWR model are limited to the conditional
means of the economic and public health outcomes. Fotheringham et al. (2002) asserted that
local GWR estimates are highly sensitive to outlying observations, and Mur and Lauridsen
(2007) showed how outliers affect the reliability of the tests for social dependence, such
as Moran’s I. To understand spatially varying model relationships at different points of the
disaster outcome distribution, we have further integrated QR into the SAR-GWR framework.

Overall, local economic and public health outcomes were associated with their pre-
existing sociodemographic characteristics, as captured by the CDC SVI, but their relation-
ships varied not only spatially across counties and broad regions but also among communities
exposed to the pandemic at different degrees. Our integrated SAR-GWQR framework high-
lights the varying role of social vulnerability in predicting economic and human losses of
different counties in different regions, depending on their relative exposure to COVID-19
outbreaks. At the typical levels, or medians, of pandemic-related economic and human
losses, for instance, a divide emerged between the eastern and western United States.

5. CONCLUSION

We have explored the empirical validity of the CDC’s composite measure of social vulnerabil-
ity in the context of the COVID-19 pandemic. The OLS method, the standard workhorse in
econometric analysis, yields weak support for the association of the CDC SVI with economic
outcomes at two stages of the pandemic. To shed light on model relationships beyond the
conditional mean of the dependent variable, we have applied quantile regression to estimate
different effects of the SVI at different points of the disaster outcome distribution.

Compared to OLS, “global” conditional quantile regression offers more decisive evidence
in support of social vulnerability in predicting the pandemic’s uneven economic devastation
across the United States. In the wake of the nationwide lockdowns in early 2020, more
socially vulnerable counties experienced disproportionately more employment and output
losses, except those hardest-hit county economies (top quartile). About two years into the
pandemic, the nationwide economy had restored most of its employment and output losses,
but recovery was uneven across the nation. For local economies remaining behind their
pre-pandemic levels (upper quantiles), social vulnerability was directly associated with their
relative performance. Local GWR estimation results further infer that many of those slowly
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recovering counties were clustered in the Northeastern region. The SAR-GWQR framework,
which incorporates conditional quantile regression into spatial models, distinguishes the role
of social vulnerability in disaster outcomes between the eastern and western United States
at the median of the conditional outcome distribution.

In contrast to the results for economic outcomes, OLS results support the role of social
vulnerability in explaining different counties’ exposure to COVID-19 health risks and their
death tolls. Conditional quantile regressions further indicate that, during the first wave of
COVID-19 outbreaks, social vulnerability was positively associated with death tolls among
most counties except those with little exposure to COVID-19 health risks (lower quartiles).
Those outliers were mostly rural counties in the Great Lakes and Midwest regions. Over
the course of the pandemic through June 2022, more socially vulnerable counties saw more
cumulative death tolls, although the role of social vulnerability diminished as the exposure
to the public health impact increased (upper quartiles).

We attribute the shortfall of OLS as a conditional-mean estimator to the presence of
extreme local outcomes in the wake of major developments in the COVID-19 pandemic. Still,
quantile regression is a “global” model that seems to mask substantial variation in model
relationships within and across regions. The SAR-GWQR framework allows for spatial
autocorrelation and spatial heterogeneity in model relationships at different points of the
outcome distribution. Applying this framework to the economic and public health outcomes
in the pandemic highlights the distinct role of social vulnerability in the western versus
eastern United States at the middle quantile of the conditional distribution.

Taken together, our regression results reinforce pre-existing social vulnerability conditions
as key determinants for a typical U.S. community’s susceptibility to the pandemic’s woes as
well as a hindrance to its eventual recovery. Yet our study also highlights the complexity,
or nonlinearity, of the relationships between local disaster outcomes and their determinants.
This helps explain the fragile findings on the predictive power of social vulnerability in the
literature (e.g., Rufat et al., 2019; Spielman et al., 2020). In the case of the COVID-19
pandemic, regions within the U.S. differ widely in their vulnerability to pandemic-related
economic and public health outcomes. From this perspective, it would be fruitful in future
research to incorporate the spatial and quantile dimensions into the study of various social
vulnerability outcomes. In addition, despite much overlap between the CDC and other
popular social vulnerability measurements (Derakhshan et al., 2022), the multidimensional
nature of community-level sociodemographic conditions calls for event studies with other
social vulnerability determinants.

By comparing disaster outcomes in two time periods as snapshots, we shed light on the
evolving role of social vulnerability over time. More specifically, we have identified changes in
the relationships between social vulnerability and some disaster outcomes near the beginning
and the end of the pandemic. These findings underscore the cyclical, or transitory, nature of
socioeconomic conditions, particularly at the local level, in the wake of a major disruptive
event. For economic outcomes, U.S. counties hit hardest in the wake of the nationwide
lockdown were not particularly socially vulnerable. In the longer run, however, the role of
social vulnerability became the strongest among worst-performing counties.

The opposite was true for public health outcomes. More socially vulnerable counties
witnessed more death tolls during the first wave of COVID-19 outbreaks. Over time, gov-
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ernment interventions might have ameliorated the public health outcomes of socially vulner-
able communities. To guide disaster mitigation and responses, policymakers would benefit
from a better understanding of the spatial and temporal dynamics uncovered in this paper,
especially among socially vulnerable communities.
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APPENDIX

Figure A1l: Data of COVID-19 Pandemic Outcomes
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Figure A2: Data of Explanatory Variables
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