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A Computational Procedure for an Expanded
Steiner-Weber Problem of Optimal Location

ABBAS MIRAKHOR AND CHARLES D. BENNETT*

INTRODUCTION

The purpose of this note is to present a realistic approximation to the classi-
cal Steiner-Weber minimization problem for optimally locating a central facility by
first constructing a continuous model employing population regions and second
using a centroidal approach to aid in the solution of the regional location problem.
The problem under consideration can basically be stated as follows:

Consider the problem of optimally locating a central facility serving a com-
munity consisting of a large number of persons who will be using the facility.
Constructing a Cartesian coordinate system over the feasible community area
and employing Euclidean measure of effectiveness in analyzing the problem, the
central facility would be located where the sum of the distances from the central
facility to each person in the community who will use the facility (weighted by
some factors to allow for differences in trip frequency, cost per trip, etc.) was at
a minimum.

Mathematically, the problem can be stated
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where x;, y; and w; are, respectively, the x-coordinate of the location of the resi-
dence of the ith person, the y-coordinate of the location of the ith person, and
the product of the weighting factors for the ith person.

Equation (1) could be used as a measure of effectiveness only if all the ele-
ments of the sum were known, i.e., the location and weights for each person in
the community. This information may not be known and the difficulty in obtain-
ing it may prove prohibitive.

A high degree of realism could be maintained if the community comprising
the residences concerned were viewed as a continuous area and sectioned into
regions, each with some common characteristics, such as trip frequency, travel
costs per trip, and population density. The resulting aerial location problem will
still attempt to minimize the sum of the Euclidean distances from the central
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facility location to each person on the ith population region. Only now equation
(1) becomes

2) ffw [(xx)” + (3-y:)°1"* dydx
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where R ; represents the aerial dimensions of the ith reglon i=12,...m;w
is the product of the weighting factors for the ith region; x,y are the coordmates
of feasible location for the central facility; and x X;, ¥; are the coordinates of the
persons comprising the ith population region [9].

Each element of the sum of equation (2) involves the evaluation of a double
integral, integrated over the limits of the ith region for each of the m regions.
The evaluation of equation (2) involves a somewhat prohibitive degree of com-
plexity except in the case where the region is restricted to be rectangular in
shape and of uniform population density. Even in this restricted case, though,
the computational time needed to implement a computer searching procedure, as
well as other shortcomings, leads us to look for an alternative measure of effec-
tiveness on which to base the search.

The solution of the problem stated by equation (2) has been approached
by Love [9] by restricting his analysis to only those cases where the population
regions are rectangular (or can be approximated by a series of rectangles) and
have a uniformly distributed population density. To solve the problem for this
restricted case, a general mathematical expression is derived for each element in
the sum of equation (2), i.e., each double integral, which is then coupled with a
computer searching technique [3,4] to locate both an unconstrained and con-
strained optimum location. The shortcomings of using this method for those
cases where Love’s model is applicable are three-fold.

First, the complexity of the final expression for the solution of each double
integral of equation (2) requires both unnecessary time in its evaluation and
numerical approximation methods in any gradient searching procedure which
might use the expression, thus reducing the efficiency of the gradient method
and increasing computation time. Second, the realism of the model is limited by
the necessity of rectangular regions. Irregular shaped regions may be sub-divided
into small rectangles as an approximation, but another element of the sum of
equation (2) is added and another evaluation of a double integral is required,
increasing computation time even further. Thirdly, population density differences
among regions are used as part of the constant multiplier w;, so there is a need
for the assumption of a constant population density within a region. This is a
rather unrealistic assumption unless the population regions are specified as rela-
tively small areas, which forces the limit of the sum (m) in equation (2) to
increase for a given community size. Thus, equation (2) will involve more double
integrals to be evaluated and computation time will increase.

The Location Model

An alternative to evaluating equation (2) is the consideration of using the
sum of the distances between the central facility location and the centroids of



Volume 5, Number 1 101

the population regions as a measure of effectiveness to be minimized. Mathemati-
cally the objective function would then become

(3)  Min wi[(x—)‘ci)2 + 51"
X,y i=1

where X; and ¥; are, respectively, the x and y components of the centroid of
the ith region and the multiplier w; contains a new factor, that of the area of
the ith region. Notice that the Steiner-Weber problem of equation (1), the
original objective function, was approximated by equation (2), an aerial problem
involving difficulties in its solution. Equation (2) can be reduced to equation (3),
another Steiner-Weber problem because of the fact that the optimal facility loca-
tion x*, y* obtained from using equation (2) as a measure of effectiveness coin-
cides with the optimal facility location obtained by using equation (3).

The evaluation of each element of the sum of equation (3) involves only
the calculation of the centroid of the ith region and the area of the ith region.
The x and y coordinates of the centroid of each region are known to be the
first moment of the area about the appropriate axis divided by the area of the
region, i.e.,

: ff R, x6,(x,y) dydx
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where 4i (X,y) is the density function of the ith population region, relating popu-
lation density to the X,y coordinates within a region.

Thus, equations (4) and (5) are used to calculate (X;,y;), =1, 2,... m
and equation (3) provides the measure of effectiveness to be used with one of
the many solution techniques of the Steiner-Weber problem [5,10].

Numerical Example

Consider the community as portrayed by Figure 1 showing a community
consisting of seven regions, each with different dimensions and population densi-
ties. The coordinates of the actual persons whose residences comprise the regions
are not known. For this reason, if a commonly used facility were to be located
at some location to serve the community, equation (1) could not be used. How-
ever, if the dimensions of each region are known, as is the case here, equation
(2) can provide the necessary approximation of equation (1), and equation (3)
can be used as a measure of effectiveness in the search.
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The x and y coordinates of the centroids of the ith region along with the
area of the ith region are found using equations (4) and (5). The resulting
centroid coordinates (X;,¥;), the regional area (A;), the travel cost per trip
(c;), the trip frequency referenced over some common time period (f;), and

the population density (d;) for each of the seven population regions are shown
in Table 1.

Mathematically, then, the problem at hand is

7
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where the parameters c;, f;, d;, and A; are specified in Table 1.
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The problem is convex [9] and Carroll’'s Created Response Surface Tech-
nique [3] employing Fiacco and McCormick’s SUMT algorithm [4] was pro-
grammed [1] and utilized in solving the above problem.*

Computational results are shown in Table 2.

CONCLUSIONS

The above centroidal model used with Fiacco and McCormick’s SUMT
searching algorithm provides an efficient and realistic solution to the minimiza-
tion problems of equations (2) and (3). When data is not available to use equa-

Table 1. Parameters for Numerical Example

i X; Vi A; ci, f d;
1 2.0 155 50 1.0 1 1
2 9.0 23.5 30 1.5 5 1
3 15.0 6.5 21 1.3 3 1
4 14.0 15.0 78.5 1.1 2 1
5 20.0 7.5 22 2.0 1 1
6 14.0 2.5 25 3.1 4 1
7 6.0 2.5 35 2.8 2 1

Table 2. Computational Results

Total Elapsed Time CPU Time Optimum x*, y*
1.01 sec. .5665 sec. 12.57, 7.02
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tion (1) as a measure of effectiveness, the problem can be approximated with
equation (2) and the centroidal model utilized for its solution with good results.

It must be noted that the total cost of transportation incurred by the com-
munity by locating the central facility at x*, y* is never known using the cen-
troidal approach, but we do know that this total cost is at a minimum at this
location.

In the sample problem shown here, each of the seven population regions were
of different shapes, had different areas, different trip frequencies and different cost
factors. The population density within a region, though, was constant. Equations
(4) and (5) free us from this necessity in that a density function may be
specified, ie., 3i (x,y),1=1,2, ..., n, relating population density within the ith
population region to the x,y coordmates This density function would become part
of the numerator and denominator of ejuations (4) and (5) and the resulting
centroid would account for the variance of population density within the region.
In this case, the multlpher d; for the ith region would assume the average popu-
lation density value in that regxon all other multipliers for that region remammg
unchanged. This average value of the population density for the ith region may
be found by substituting the x,y coordinate of the centroid, X;,y,, into the densi-
ty function si (x,y).

In the cases where the density within a region is constant, i.e., §i (X,y) =51,
the density cancels in equations (4) and (5) and the centroid is irrespective of
the density.

FOOTNOTES

1Computer programmed in FORTRAN IV and run utilizing UNIVAC 1108 at University of Alabama in
Huntsville Research Institute.
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