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Supply Source Locafioii Inyolying Fixed
Charges And Economics Of Scale:

A Heuristic Approach

Stephen Fuller*

This paper presents a model capable of accommodating plant location
problems where 1) the long-run source or plant cost function exhibits a
positive intercept (fixed charge), 2) the long-run plant cost function
is discontinuous, and 3) there are economies of scale associated with
increasing plant size. The model developed and presented here reverses
the cost minimizing sequence of the Chern and Polopolus formulation, a
model designed to include a discontinuous long-run plant cost frmction.
For many types of plant location problems, the developed model (source
location cost-sequencing model) will yield a lower cost solution than
the Chern and Polopolus formulation.

The discontinuous plant cost function argument centers on the in
divisibility of durable equipment available to construct alternative
source sizes.^ Because technology for constructing alternative plant sizes
is restricted, a limited number of short-run plant cost functions may
exist. Therefore, a specified source size may be applicable over a wide
range of output. In which case, the long-run source cost function is dis
continuous. See Figure 1.

*Associate Professor, Department of Agricultural Economics, Texas A&M University.

Plant Size 4

Plant Size 3

Plant Size 2

Plant Stze

Figure 1. Discontinuous Plant Cost Function
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The model presented here is adapted to include several plant cost
structures. In particular, each plant's short-run total cost function may
have a unique positive intercept and unit cost value, or each short-run
function may possess a unique intercept value but have unit costs which
are analogous to other functions. Figure 1 is representative of that plant
cost structure where each plant size's intercept and unit cost value are
unique.

This paper proceeds with 1) a mathematical statement of the source
location problem, 2) a mathematical statement of the developed source
location cost-sequencing model and a comparison with the Chern and
Polopolus model, 3) a small-scale numerical example involving com
parisons of the Chern and Polopolus model with the source location
cost-sequencing model and 4) an application of the source location cost-
sequencing model.

A Mathematical Statement of the Problem

Given are M destinations with known levels of demand, D,, D^, . . .,

Dm- The destinations are numbered, j = 1, 2, . . ., M. There are N
potential source locations, numbered i = 1, 2, . . ., N, and P source sizes,
numbered k= 1,2 . . ., P. Each of the P source cost functions (segments
of the long-run cost function) has an annual fixed charge (fk) and dis
plays constant marginal costs (Ck).^ Annual capacity for each of the P
sources is known and is represented by Rk. In addition, economies of
scale exist. Distribution costs between each pair of potential source
locations and destinations are proportional to the quantity distributed
and the distance between the pair of points. Unit distribution cost from
the ith potential source location to the jth destination is represented by
tij, while Xij denotes quantity of commodity or service transported from
the ith source location to the jth destination.

The objective is to determine the number, size and location of sources
which minimize total plant and distribution costs; namely, minimize:

P  N P N M

Z  I fkyki I Z Z (ck + tij) Xij
k=l i=l k=l i=l j=l

where,

yki = 1 if source size k is located at i
fori = 1, 2,..., N.

yki = 0 if no source size k is located at i

An admissible solution must be one where source capacity is capable
of meeting aggregate demands; namely,

P  N M

Z  Z Rkyki > Z Dj
k-^1 i=l j=l

.  for i = 1, 2,..., N.
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Also, the Xij and yti variables are related in a conditional manner. If
p

no source is located at location i, i yki = 0, in which case, Xij = 0 for
p  k=l

that location. Only if ym = 1, can Xij be non-zero; this gives the

set of conditional restraints.

Xij = 0 if I yki = 0'
k=l I

Xij > 0 if I yki = 1
k=l

• For i = 1, 2,. .., N and all for all values of j.

A Comparison of the Chern and Polopolus Model
With the Developed Source Location Cost-Sequencing Model

The plant location problem involving the discontinuous cost function
may be formulated as a mixed integer programming problem. However,
the discontinuous plant cost function magnifies the computational bur
den of obtaining a solution because of the need to consider all plant size
combinations. Mixed integer programming systems available from lead
ing computer manufacturers are the most capable of existing codes® but,
in general, become computationally expensive for problems involving in
excess of one-hundred variables. In which case, only very small location
problems of the discontinuous plant cost function type can be solved
efficiently, given existing mixed integer code capabilities. Therefore,
heuristic techniques are necessary.

The heuristic procedure by Chern and Polopolus involves two steps
[3]. The initial step involves a determination of the least-cost locational
configurations; that is, the allocation of commodity or service at plant
locations which minimizes total distribution cost for each subset, n, of the
N source locations, where n < N. Second, the total distribution and

source cost with respect to number of locations, number of sources and
source size pattern is minimized. This is accomplished by first deter
mining source numbers and corresponding source sizes which minimize
total source cost for each location within each of the n subset's optimum
locational configuration. After least-cost source number and size patterns
within each of the n subset's optimal locational pattern has been deter
mined, source costs are aggregated. This procedure is repeated for each
of the n subsets. The overall optimum is determined bj^ aggregating
minimized distribution and source cost for each of the n subsets and

then identifying the minimum.

The Chern and Polopolus model answers two sequenced questions.
They are: 1) what allocation of commodity or service minimizes distri
bution cost for each of the n subsets of considered source locations, and
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2) what source size pattern minimizes industry aggregated source cost
for each of the n subsets optimum locational configuration. The model
developed in this paper answers the following questions sequentially:
1) which source size pattern for each of the n subsets of source locations
minimizes total source cost, and 2) which locational configuration for
each of the n subset's optimum source size pattern minimizes total dis
tribution cost. By reversing the steps in which distribution and source
costs are optimized, cost emphasis is reversed.

The developed source location cost-sequencing model approximates
an overall minimum by accomplishing the following three steps:

Step 1. For each n, select that source size pattern which minimizes
total source cost (TPC); namely, minimize the following function:

P N

TPC =1 1

k=l i=l

fkyki +
P N M

I I I
k=l i=l j=l

and denote the resulting minima for each n.

Step 2. Using the least-cost source size pattern for each n, determined
in Step 1, find those locations which minimize total distribution cost
(TAG)." Minimize for each n:

N M

TAG = I I t,iX,i

i=l j=l

Step 3. Using the results for each value of n found in Steps 1 and 2,
find that value of n which minimizes total system cost (TG); namely,
minimize:

P N

I  I

k=l i=l

P N M

fkyki I I I
k=l i=l j=l

(Ck -|- tij) Xij

Minimization of the total source cost function (TPG, Step 1) is accom
plished by an algorithm which calculates cost for all source combinations
for each of the n subsets of source locations.'^ After calculations of each
n's least-cost source size pattern, a fast transportation code developed by
Srinivasan is employed to calculate total distribution costs associated
with allocating these facilities between alternative locations.® That lo
cation configuration which minimizes total distribution cost for each of
the n subsets constitutes the minimized total distribution cost function

(TAG, Step 2). The least-cost subset is determined by summing the
minimized source (Step 1) and distribution cost function for each of the
n subsets.

A priori reasoning permits insight into the bias associated with the
above heuristic solution techniques. The sequence in which costs are
minimized imparts a bias into the solution. The cost initially optimized
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is given priority since the second stage of optimization is forced to ac
commodate the first stage decision. When using the source location cost-
sequencing model, the commodity or service is allocated to accommodate
the optimum source size pattern that is resolved in the first step. The
second step involves location of this optimum source size pattern so as
to minimize distribution cost. In contrast, the Chern and Polopolus
model initially optimizes with respect to distribution or transportation
cost; then, in the second stage it seeks that source size pattern to op
timally accommodate the initial stage's outcome. Clearly, the solution
rendered by the source location cost-sequencing model will have lower
plant or source costs hut larger distribution costs than the Chern and
Polopolus model. Or, vice versa, the Chern and Polopolus formulation
will yield lower distribution costs but larger plant costs than the source
location cost-sequencing model. The appropriate model depends on the
specific characteristics of the source location problem. Generally, if 1)
unit distribution cost is small relative to unit plant cost, 2) demand
nodes are not highly dispersed and 3) there are substantial economies
associated with larger plants, then the source location cost-sequencing
technique is most appropriate. If the opposite situation prevails, then
the Chern and Polopolus model may yield lower costs.

Numerical Example

Suppose there are three market locations or destinations (M=3)
which have annual demands (Dj, D,, D3) of 3, 6 and 3 units, respective
ly. In addition, there are three potential source locations (N=3) and
two source sizes (P=2). Suppose that the annual fixed charge (f,) for
the small source (size 1) is $2, unit source cost (c,) is $1 and the source
has capacity (Ri) to provide 4 units annually. 'The fixed charge (f,)
for the large source (size 2) is $3, unit source cost (ca) is $.75 and the
source has capacity (Ra) to provide 6 units annually. Unit distribution
cost, tij, from the three potential source locations to the three demand
locations is given by the following matrix:

Demand Demand Demand

Location Location Location

1 2 3

Potential source
$ $ $

Location 1 .20 .40 .30

Potential source

Location 2 .10 .10 .50

Potential source

Location 3 .30 .20 .35

This small problem can be solved through complete enumeration of
aU combinations. For the discontinuous plant location problem, the
total number of combinations can be represented by (P -|- 1)N— 1 where
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P represents the number of plant sizes comprising the long-run function
and N equals potential source locations. Consequently, there are 26
combinations [(2+1)® — 1 = 26] involving the 2 plant sizes at the 3
potential source locations; however, only 11 combinations have sufficient
capacity to meet the 12 units of demand. Those source size combinations
with sufficient capacity to meet demands are shown at all possible
source locations in Table 1. The combination (1, 1, 2) indicates that
source size 1 is located at source locations 1 and 2, while source size 2 is
located at source location 3. Whereas, combination (2, 0, 2) denotes
placement of source size 2 at source locations 1 and 3. The 0 indicates
that no source is located at source location 2. The fixed source costs,
shown in Table 1, represent aggregated annual fixed charges associated
with the source size combination, while the unit source and distribution
costs are proportional to the quantity of commodity or service provided
by that combination. Minimum distribution (tij) and unit source cost
(Ck) for each combination are obtained by minimizing

2  3 3

I  Z I

k=li=l j=l
tij) Xij

with a transportation algorithm.

After aggregating fixed and proportional costs for all combinations,
it is observed that the global minimum cost is $17.10 and is achieved
with combination (2, 2, 0). Source size 2, located at source location 1,
ships 3 units to demand locations 1 and 3 while the same size source lo
cated at source location 2 ships 6 units to demand location 2.

To compare the Chern and Polopolus procedure with the source lo
cation cost-sequencing model, both models were applied to the above
problem. The results are shown in Table 2. The single location solution,
obtained with the Chem and Polopolus model, involves placement of two
large sources at source location 2. Whereas, the two-location solution
includes a small source at location 1 and a small and a large source at
location 2. The least-cost solution involves the two large sources at lo
cation 2—total cost of this organization is $17.40, $.30 greater than the
global minimum. The optimal solution resolved with the source location
cost-sequencing model includes two large sources—one at source location
1, the other at source location 2. The total cost of this organization is
$17.10, the global minimum.

Numerical Application

The source location cost-sequencing model was applied to resolve
optimum regional cotton ginning industry organization in a portion of
the Rio Grande River Valley (Figure 2). More efficient techniques of
assembling cotton from farms to gin plants, as well as recently developed
high capacity processing plants, have provided impetus for producer-
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TABLE 1.

Enumeration of Combinations for Numerical Example

Combinations of Two

Source Sizes At

Three Locations

(1,1, 1)
(2, 2, 0)
(2, 0, 2)
(0, 2, 2)

(1, 1, 2)
(1, 2, 1)
(2, 1, 1)
(2, 2, 1)
(2, 1, 2)

(1, 2, 2)
(2, 2, 2)

*denote optimum solution

Source Fixed

Charge

(fj

Total Unit Source

and Distribution Cost

(Ck -f- tlj) Total Cost

20.30

17.10*

17.70

17.25

20.30

19.60

19.80

19.10

20.30

20.10

20.10

owned cotton ginning cooperatives to examine potential cost savings of
this new technology [4].

The objective was to determine the number, size and location of cotton
gins which minimized total cost of processing and assembly. The em
pirical characteristics of the gin location problem were analogous to
those outlined in the mathematical representation of the problem section.
Although the gin location problem required consideration of assembly
cost rather than distribution cost, the essential nature of the problem
was not altered.

0 5 10
Miles

El Paso, Texas

Figure 2. Potential Plant Locations, Rio Grande Valley



TABLE 2.

Comparison of Solutions Obtained with Chem-Polopolus Model and the Source Location Cost-Sequencing Model.

Chern-Polopolus Model

Source

Locational

Number Confiprura-
of Loca- tion (Source

tions Location)

Total Unit

Source Total Source and

Size Fixed Distribution Total

Pattern Charge Cost Cost

Source Location Cost-Sequencing Model

Source

Locational

Configuration
(Source

Location)

Source

Size

Pattern

Total

Fixed

Charge

Total Unit

Source and

Distribution

Cost

2-Source Size 2

1-Source Size 1

1-Source Size 1

l-Source Size 2

2-Source Size 2

1-Source Size 2

1-Source Size 2

1-Source Size 1

1-Source Size 1

1-Source Size 1 6

aThree location solution is identical to the two location solution because the locational figuration is not altered by the addition of a location.
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Gin plant size, or rate of plant output, is directly related to the num
ber of gin stands within a plant; therefore, a one-gin-stand plant is
capable of processing one-half the quantity per time period of a two-
gin-stand plant, etc/ Manufacturers revealed that only five plant sizes
(P = 5) were technologically and commercially available. Because of
the limited number of available plant sizes, the long-run plant function
is discontinuous; that is, the long-run function is similar to that shown
in Figure 1.
Based on zoning laws, location of transportation arteries or acces

sibility, projected urban developments and concentration of cotton pro
duction, twelve potential gin plant locations were selected (N=12).
Existing plant locations were considered as potential plant sites only
if the selection criteria were not violated.

Using Agricultural Stabilization and Conservation Service aerial
photos and farmers' production data, the region was segmented into 139
production origins (M=139). With this data, a 139 x 12 matrix was con
structed that related the quantity of cotton at each farm and distance
between each farm and potential gin plant location. Unit-mile assembly
cost between each farm and potential gin plant site was calculated with
a previously estimated assembly cost function.

Results

The optimal plant size and locational configuration for a range of
one through four locations is shown in Table 3 and Figure 2. Accom
plishment of the developed model's initial step reveals that regional
production is most efficiently processed with a 24- and 32-bale per hour
plant, incurring a total plant cost of $797,186 (Table 3). The overall
least-cost solution involves locating these plants at sites C and D (Fig
ure 2). This optimal locational configuration is obtained through accom-
phshment of Step 2.
The empirically determined locational pattern corresponds to the

optimum configuration one would predict. 'That is, the overall least-cost
plant locational configuration is attained by locating the plants in the
most intensive production areas with some compensation for locational
pulls of adjacent areas.

It is of interest to note that system costs behave as expected; that is,
as the number of activated plants increase, total assembly costs decrease
while total gin plant costs increase (Table 3). For the three location
solution, assembly costs decrease $5,423 relative to the two location solu
tion; whereas, plant costs increase by $131,502. A comparison of the
three and four location solutions show similar cost behavior.

The Chern and Polopolus model was applied to the above problem so
that its solution might be compared with the source location cost-sequen
cing model. The Chern and Polopolus model's solution involved a 16-
and a 40-bale per hour gin plant at C and D locations, respectively. The
total cost of this organization was $1,018,211—$9,783 more than the
source location cost-sequencing model's solution.



TABLE 3.

Optimal Plant Size and Plant Location Configuration with Associated
Plant and Transportation Cost for 1 Through 4 Plant Locations.

Gin

Plant(s)
Location

Configuration

Gin

Plant Size(s)
Bale/Hour
Capacity

Total Gin

Plant Cost

($)

Total

Assembly Cost
($)

797,186 224,624

797,186 211,242

928,688 205,819

1,042,482 204,628
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Summary

The source location cost-sequencing model permits inclusion of a dis
continuous long-run plant cost function, fixed charges and plant eco
nomies of scale. In addition, the model accommodates a heterogeneous
spatial density of supply or demand. The developed model enables the
researcher to incorporate additional realism, thus enhancing the value
of the research product.

The source location cost-sequencing model does not guarantee a
global minimum, since simultaneous variation is not attained in all
problem dimensions. However, the addressed locational problem is not
directly solvable given existing mathematical tools and constraints on
computer time; thus, the developed procedure represents a positive con
tribution to empirical locational analysis.

FOOTNOTES

long-run plant cost function is com
prised of a family of short-run functions, and,
in a theoretical extreme, the long-run function
becomes continuous. An early Scandinavian
economist disputed the notion of a continuous
long-run plant cost function. More recently,
Chamberlin [2] and Brems [1] have given ad
ditional credence to the discontinuous cost

function concept.
2An empiricial short-run cost function show

ing constant marginal cost conflicts with eco
nomic theory's U-shaped function; however,
this is reconciled by introduction of a rate
dimension. A plant operating at its optimum
output rate would be expected to incur con
stant marginal cost and accordingly give rise
to linear total cost function. John Johnston

suggested this form as most plausiable by
accumulating empirical evidence [5].

•"^The mixed integer code available with
International Business Machines Corporation's
MPSX system is an example of the current
generation of available codes.
4 If costs vary with plant location, this can

be included by making alterations in the trans
portation matrix. This may be accomplished
by adding to each column of the transportation
cost matrix that additional unit cost associated

with that particular location.
•'^This algorithm was implemented in APL/

360. The algorithm enumerated plant cost
associated with all plant size combinations

capable of processing area production. In an
applied case, involving five plant cost functions,
199 of the plant size combinations were capable
of processing area production. These calcula
tions were executed in approximately three
seconds.

GThe transportation code was developed by
Dr. V. Srinivasan, Graduate School of Manage
ment, University of Rochester, Rochester, New
York. This code was capable of solving a
100 X 1^10 transportation problem in approxi
mately five seconds of computer time. The
code was programmed to calculate transporta
tion cost associated with locating each subset's
least-cost plant size pattern among all com
binations of potential locations. For example,
locating four plants among eight potential loca
tions would require 8C4 = 70 separate solu
tions which would require less than six minutes
of computer execution time. In the applied
case, the overall least-cost solution always in
volved the overall optimum plant size pattern;
therefore, attention was focused on optimally
locating this plant size pattern. This substan
tially reduced computer time requirements.
"Separation of cotton lint from seed is

accomplished by the gin stand which is the
basis of plant output. All auxiliary gin plant
equipment is designed to accomodate the gin
stand operating at its optimal rate of output.
Plant size or rate of output is directly related
to the number of gin stands within the plant.
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